A stochastic predator-prey model with delays

被引:2
作者
Du, Bo [1 ,2 ]
Wang, Yamin [3 ]
Lian, Xiuguo [1 ]
机构
[1] Huaiyin Normal Univ, Dept Math, Huaian 223300, Jiangsu, Peoples R China
[2] Yangzhou Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
[3] Lianyungang Tech Coll, Dept Basis Course, Lianyungang 222006, Jiangsu, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
stochastic perturbation; global existence; ultimately bounded; POSITIVE PERIODIC-SOLUTIONS; VOLTERRA COMPETITION SYSTEMS; FUNCTIONAL-RESPONSES; MUTUAL INTERFERENCE; EXISTENCE; STABILITY;
D O I
10.1186/s13662-015-0483-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stochastic delay predator-prey system is considered. Sufficient criteria for global existence, stochastically ultimately bounded in mean and almost surely asymptotic properties are obtained.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 37 条
[11]   MUTUAL INTERFERENCE BETWEEN SEARCHING INSECT PARASITES [J].
HASSELL, MP .
JOURNAL OF ANIMAL ECOLOGY, 1971, 40 (02) :473-&
[12]   Stochastic delay population systems [J].
Hung, Li-Chu .
APPLICABLE ANALYSIS, 2009, 88 (09) :1303-1320
[13]   Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response [J].
Hwang, TW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) :113-122
[14]   Global analysis of the predator-prey system with Beddington-DeAngelis functional response [J].
Hwang, TW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) :395-401
[15]  
Ikeda N., 1977, Osaka J. Math, V14, P619, DOI [10.18910/7664, DOI 10.18910/7664]
[16]  
Ikeda N., 1981, Stochastic Differential Equations and Diffusion Processes
[17]   Analysis of autonomous Lotka-Volterra competition systems with random perturbation [J].
Jiang, Daqing ;
Ji, Chunyan ;
Li, Xiaoyue ;
O'Regan, Donal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) :582-595
[18]   Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics [J].
Kan-On, Y ;
Mimura, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) :1519-1536
[19]   The Milstein Scheme for Stochastic Delay Differential Equations Without Using Anticipative Calculus [J].
Kloeden, P. E. ;
Shardlow, T. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (02) :181-202
[20]  
Kuang Y., 1993, Delay Differential Equations with Applications in Population Dynamics