Limit theorems for quantum walks associated with Hadamard matrices

被引:8
作者
Ampadu, Clement
机构
[1] Boston, MA 02132
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 01期
关键词
D O I
10.1103/PhysRevA.84.012324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study a one-parameter family of discrete-time quantum walk models on Z and Z(2) associated with the Hadamard walk. Weak convergence in the long-time limit of all moments of the walker's pseudovelocity on Z and Z(2) is proved. Symmetrization on Z and Z(2) is theoretically investigated, leading to the resolution of the Konno-Namiki-Soshi conjecture in the special case of symmetrization of the unbiased Hadamard walk on Z. A necessary condition for the existence of a phenomenon known as localization is given.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
AHARANOV Y, 1992, PHYS REV A, V48, P1687
[2]  
AMPADU C, 2010, THESIS CENTRAL MICHI
[3]  
Fitzpatrick P.M., 1996, ADV CALCULUS COURSE, V1st
[4]  
FUSS I, ARXIV07050077
[5]   Weak limits for quantum random walks [J].
Grimmett, G ;
Janson, S ;
Scudo, PF .
PHYSICAL REVIEW E, 2004, 69 (02) :026119-1
[6]   One-dimensional three-state quantum walk [J].
Inui, N ;
Konno, N ;
Segawa, E .
PHYSICAL REVIEW E, 2005, 72 (05)
[7]   Localization of two-dimensional quantum walks [J].
Inui, N ;
Konishi, Y ;
Konno, N .
PHYSICAL REVIEW A, 2004, 69 (05) :052323-1
[8]   Quantum walks and orbital states of a Weyl particle [J].
Katori, M ;
Fujino, S ;
Konno, N .
PHYSICAL REVIEW A, 2005, 72 (01)
[10]   Absorption problems for quantum walks in one dimension [J].
Konno, N ;
Namiki, T ;
Soshi, T ;
Sudbury, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01) :241-253