A membrane in adhesive contact

被引:16
|
作者
Andrews, KT [1 ]
Chapman, L
Fernández, JR
Fisackerly, M
Shillor, M
Vanerian, L
Vanhouten, T
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15706, Spain
关键词
contact; obstacle; membrane; free boundary; adhesion; existence and uniqueness; subdifferential; elliptic variational inequality; error estimates; numerical solutions;
D O I
10.1137/S0036139902406206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model for the process of quasi-static evolution of an elastic membrane in adhesive contact with a rigid obstacle is developed, analyzed, and numerically simulated. The model consists of an elliptic variational inequality for the membrane displacements and a nonlinear ordinary differential equation for the evolution of the adhesion field. By using regularity results from the theory of elliptic variational inequalities and a fixed point argument, the system is shown to have a unique weak solution. A fully discrete algorithm is described and shown to converge, and its error estimates are derived. In this process we make critical use of the regularity properties of the solution. Finally, the results of numerical simulations, based on the fully discrete algorithm, are presented.
引用
收藏
页码:152 / 169
页数:18
相关论文
共 50 条
  • [21] Experimental Investigation of the Adhesive Contact of an Elastomer
    Voll, L. B.
    Popov, V. L.
    PHYSICAL MESOMECHANICS, 2014, 17 (03) : 232 - 235
  • [22] An experimental analysis of elliptical adhesive contact
    Suemer, Bilsay
    Onal, Cagdas D.
    Aksak, Burak
    Sitti, Metin
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
  • [23] Simulation of Adhesive Contact of Soft Microfibrils
    He, Xin
    Li, Qiang
    Popov, Valentin L.
    LUBRICANTS, 2020, 8 (10) : 1 - 11
  • [24] Deformation and adhesive contact of elastomeric membranes
    Flory, Anny L.
    Brass, David A.
    Shull, Kenneth R.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (24) : 3361 - 3374
  • [25] Adhesive contact mechanics of viscoelastic materials
    Mandriota, C.
    Menga, N.
    Carbone, G.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 290
  • [26] Contact time dependence of adhesive energy
    Baljon, A
    Depuy, T
    Vorselaars, J
    METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 377 - 383
  • [27] Experimental investigation of the adhesive contact of an elastomer
    L. B. Voll
    V. L. Popov
    Physical Mesomechanics, 2014, 17 : 232 - 235
  • [28] Non-slipping adhesive contact between mismatched elastic cylinders
    Chen, Shaohua
    Gao, Huajian
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (06) : 1939 - 1948
  • [29] Fracture mechanics analysis of asperity cracking due to adhesive normal contact
    H. Xu
    K. Komvopoulos
    International Journal of Fracture, 2013, 181 : 273 - 283
  • [30] INFLUENCE OF TANGENTIAL SLIDING ON THE CONTACT AREA OF A MACROSCOPIC ADHESIVE CONTACT
    Wilhayn, Josefine
    Lyashenko, Iakov A.
    Li, Qiang
    Popov, Valentin L.
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2024, 22 (03) : 385 - 397