A membrane in adhesive contact

被引:16
|
作者
Andrews, KT [1 ]
Chapman, L
Fernández, JR
Fisackerly, M
Shillor, M
Vanerian, L
Vanhouten, T
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15706, Spain
关键词
contact; obstacle; membrane; free boundary; adhesion; existence and uniqueness; subdifferential; elliptic variational inequality; error estimates; numerical solutions;
D O I
10.1137/S0036139902406206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model for the process of quasi-static evolution of an elastic membrane in adhesive contact with a rigid obstacle is developed, analyzed, and numerically simulated. The model consists of an elliptic variational inequality for the membrane displacements and a nonlinear ordinary differential equation for the evolution of the adhesion field. By using regularity results from the theory of elliptic variational inequalities and a fixed point argument, the system is shown to have a unique weak solution. A fully discrete algorithm is described and shown to converge, and its error estimates are derived. In this process we make critical use of the regularity properties of the solution. Finally, the results of numerical simulations, based on the fully discrete algorithm, are presented.
引用
收藏
页码:152 / 169
页数:18
相关论文
共 50 条
  • [1] Dynamic Adhesive Contact of a Membrane
    Menike, R. S. R.
    Kuttler, K. L.
    Shillor, M.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (01): : 1 - 20
  • [2] Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact
    Srivastava, Abhishek
    Hui, Chung-Yuen
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2160):
  • [3] Adhesive contact of an inflated circular membrane with curved surfaces
    Yang, Xingwei
    Srivastava, Abhishek
    Long, Rong
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 279
  • [4] Elastic beam in adhesive contact
    Han, W
    Kuttler, KL
    Shillor, M
    Sofonea, M
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (05) : 1145 - 1164
  • [5] Adhesive contact of a membrane with a hemispherical indenter: Theoretical analysis and model liquid system
    Webber, RE
    Cheng, WDW
    Shull, KR
    JOURNAL OF ADHESION, 2006, 82 (05) : 427 - 446
  • [6] Existence results for dynamic adhesive contact of a rod
    Kuttler, K. L.
    Menike, R. S. R.
    Shillor, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 781 - 791
  • [7] Global existence for a nonlocal model for adhesive contact
    Bonetti, Elena
    Bonfanti, Giovanna
    Rossi, Riccarda
    APPLICABLE ANALYSIS, 2018, 97 (08) : 1315 - 1339
  • [8] Modelling of membrane bonding response: part 1 development of an adhesive contact interface element
    Liu, Xueyan
    Kasbergen, Cor
    Li, Jinlong
    Scarpas, Tom
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (03) : 612 - 625
  • [9] Models of adhesive contact between rough elastic solids
    Galanov, B. A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2011, 53 (11) : 968 - 977
  • [10] Adhesive contact of rough brushes
    Li, Qiang
    Popov, Valentin L.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 2405 - 2412