Determination of poloxamer 188 and poloxamer 407 using high-performance thin-layer chromatography in pharmaceutical formulations

被引:15
作者
Urban-Morlan, Z. [1 ]
Castro-Rios, R. [2 ]
Chavez-Montes, A. [3 ]
Melgoza-Contreras, L. M. [4 ]
Pinon-Segundo, E. [1 ]
Ganem-Quintanar, A. [1 ]
Quintanar-Guerrero, D. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Estudios Super Cuautitlan, Div Estudios Posgrado Tecnol Farmaceut, Mexico City 54740, DF, Mexico
[2] Univ Autonoma Nuevo Leon, Fac Med, Dept Quim Analit, Monterrey 64460, NL, Mexico
[3] Univ Autonoma Nuevo Leon, Fac Ciencias Biol, Dept Quim, San Nicolas 66422, NL, Mexico
[4] Univ Autonoma Metropolitana Xochimilco, Dept Sistemas Biol, Colonia Villa Quietud 04960, DF, Mexico
关键词
poloxamer; Pluronic (R); triblock polymers; reverse-phase High-performance thin-layer chromatography; Dragendorff's reagent;
D O I
10.1016/j.jpba.2007.11.027
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Poloxamers (PXMs) are amphiphilic non-ionic block polymers commonly used in the cosmetic and pharmaceutical industries. In spite of the wide use of PXMs, few studies have dealt with the analysis of these polymers in pharmaceutical preparations. In this work, high-performance thin-layer chromatography (HPTLC) has been used to quantify both PXM-188 and PXM-407 in pharmaceutical preparations. The separation of these compounds was carried out using reverse phase HPTLC plates with a chloroform-methanol mixture as the mobile phase. Detection was performed densitometrically using the Dragendorff's reagent for the visualization of PXMs. Quality parameters were established, and the detection limits ranged from 24 to 47 ng/spot. A good precision (day to day and run to run), with relative standard deviations <11.18%, was obtained. The proposed method was satisfactorily applied to the analysis of laboratory-made and commercial pharmaceutical products. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:799 / 803
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 2005, ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology
[2]  
*BASF, 1997, LUTR F68 POL 188 PHA
[3]  
*BASF, 1995, PLUR BLOCK COP NF GR
[4]  
*BASF, 1997, LUTR F127 POL 407 PH
[5]   Evaluation of pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model [J].
Desai, SD ;
Blanchard, J .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1998, 87 (10) :1190-1195
[6]   In vivo skin permeation of sodium naproxen formulated in pluronic F-127 gels:: Effect of Azone® and Transcutol® [J].
Escobar-Chávez, JJ ;
Quintanar-Guerrero, D ;
Ganem-Quintanar, A .
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2005, 31 (4-5) :447-454
[7]  
Felt O., 2001, POLYM BIOMATERIALS R, P377
[8]   Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods [J].
Galindo-Rodriguez, S ;
Allémann, E ;
Fessi, H ;
Doelker, E .
PHARMACEUTICAL RESEARCH, 2004, 21 (08) :1428-1439
[9]   Development of an assay for the measurement of the surfactant pluronic F-68 in mammalian cell culture medium [J].
Ghebeh, H ;
Handa-Corrigan, A ;
Butler, M .
ANALYTICAL BIOCHEMISTRY, 1998, 262 (01) :39-44
[10]   A COLORIMETRIC METHOD FOR DETERMINATION OF PARTS/MILLION OF NONIONIC SURFACTANTS [J].
GREFF, RA ;
SETZKORN, EA ;
LESLIE, WD .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1965, 42 (03) :180-&