Thermoelectric property studies on CuxBi2SeS2 with nano-scale precipitates Bi2S3

被引:38
作者
Li, L. [1 ,2 ]
Liu, Y. [3 ,4 ]
Dai, J. Y. [5 ]
Zhu, H. X. [1 ,2 ]
Hong, A. J. [1 ,2 ]
Zhou, X. H. [1 ,2 ]
Ren, Z. F. [3 ,4 ]
Liu, J. M. [1 ,2 ]
机构
[1] Nanjing Univ, Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Univ Houston, TcSUH, Houston, TX 77204 USA
[5] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China
关键词
Thermoelectric; Bi2SeS2; Nano-scale Bi2S3 precipitates; Cu doping; ENERGY; SEMICONDUCTOR; ELEMENTS; SOLAR; GAP;
D O I
10.1016/j.nanoen.2015.01.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The microscopic mechanisms for higher thermoelectric performance of cost competitive rock salt compound Bi2SeS2 were investigated. A low doping of Cu as an n-type dopant was conducted in order to optimize the band structure and improve the electrical conductivity. It was revealed that this compound exhibits a Seebeck coefficient higher than 300 mu V K-1, which sustains above 100 mu V K-1 even with Cu doping, leading to a higher power factor. The microstructural characterizations revealed nano-scale Bi2S3 precipitates in the CuxBi2SeS2 matrix, beneficial to the lower lattice thermal conductivity that is insensitive to the Cu doping. A thermoelectric figure-of-merit factor ZT of similar to 0.7 at 450 degrees C in accompanying with the power factor of 5.36 mu W cm(-1) K-2 was obtained under the optimized doping level, enabling this environmentally friendly compound interesting for thermoelectric power generation applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 36 条
[1]   Leadership Styles Inextricably Intertwined With the Alternative Energy of Solar, Wind, or Hybrid as Disruptive Technologies [J].
Aluya, J. .
ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2014, 9 (03) :276-283
[2]   Thermoelectrics from Abundant Chemical Elements: High-Performance Nanostructured PbSe-PbS [J].
Androulakis, John ;
Todorov, Iliya ;
He, Jiaqing ;
Chung, Duck-Young ;
Dravid, Vinayak ;
Kanatzidis, Mercouri .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) :10920-10927
[3]   Tellurium-Free Thermoelectric: The Anisotropic n-Type Semiconductor Bi2S3 [J].
Biswas, Kanishka ;
Zhao, Li-Dong ;
Kanatzidis, Mercouri G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (06) :634-638
[4]   Thermoelectric properties of p-type polycrystalline SnSe doped with Ag [J].
Chen, Cheng-Lung ;
Wang, Heng ;
Chen, Yang-Yuan ;
Day, Tristan ;
Snyder, G. Jeffrey .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11171-11176
[5]   Recent progress of half-Heusler for moderate temperature thermoelectric applications [J].
Chen, Shuo ;
Ren, Zhifeng .
MATERIALS TODAY, 2013, 16 (10) :387-395
[6]   High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures [J].
Girard, Steven N. ;
He, Jiaqing ;
Zhou, Xiaoyuan ;
Shoemaker, Daniel ;
Jaworski, Christopher M. ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Heremans, Joseph P. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16588-16597
[7]  
Goldsmid H.J., 1994, CRC HDB THERMOELECTR, P32
[8]   Estimation of the thermal band gap of a semiconductor from Seebeck measurements [J].
Goldsmid, HJ ;
Sharp, JW .
JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (07) :869-872
[9]  
Green M.A., 3 GENERATION PHOTOVO, P20
[10]  
Green M.A., APPL PHOTOVOLTAICS, P34