A Mathematical Model for HIV Drug-Resistance

被引:0
作者
Faedo, Ivan [1 ]
Raimundo, Silvia Martorano [2 ,3 ]
Venturino, Ezio [1 ]
机构
[1] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Sao Paulo, Fac Med, Sao Paulo, Brazil
[3] Fondazione ISI, Villa Gualino, I-10133 Turin, Italy
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Treatment resistance; epidemics; equilibria; HIV infection; NONLINEAR INCIDENCE; VACCINATION MODEL;
D O I
10.1063/1.3498583
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present a mathematical model of the transmission of HIV infection here the individuals receive antiretroviral drugs but may not respond to treatment. In such case the latter can be changed to a different therapy, and individuals may or may not respond also to this second set of drugs.
引用
收藏
页码:724 / +
页数:2
相关论文
共 8 条
[1]   Periodicity in an epidemic model with a generalized non-linear incidence [J].
Alexander, ME ;
Moghadas, SM .
MATHEMATICAL BIOSCIENCES, 2004, 189 (01) :75-96
[2]  
Gumel A.B., 2004, COMMUN NONLINEAR SCI, V9, P649, DOI DOI 10.1016/S1007-5704(03)00024-8
[3]   A qualitative study of a vaccination model with non-linear incidence [J].
Gumel, AB ;
Moghadas, SM .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :409-419
[4]   A simple vaccination model with multiple endemic states [J].
Kribs-Zaleta, CM ;
Velasco-Hernández, JX .
MATHEMATICAL BIOSCIENCES, 2000, 164 (02) :183-201
[5]   Modelling the effect of imperfect vaccines on disease epidemiology [J].
Moghadas, SM .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (04) :999-1012
[6]  
Raimundo Silvia Martorano, 2008, WSEAS Transactions on Biology and Biomedicine, V5, P85
[7]   Mathematical models of vaccination [J].
Scherer, A ;
McLean, A .
BRITISH MEDICAL BULLETIN, 2002, 62 :187-199
[8]  
World Health Organization, 2009, AIDS EP UPD NOV 2009