Statistical Classification for Heterogeneous Polarimetric SAR Images

被引:48
作者
Formont, Pierre [1 ,2 ]
Pascal, Frederic [2 ]
Vasile, Gabriel [3 ]
Ovarlez, Jean-Philippe [1 ,2 ]
Ferro-Famil, Laurent [4 ]
机构
[1] ONERA DEMR TSI, F-91761 Palaiseau, France
[2] Supelec SONDRA, F-91192 Gif Sur Yvette, France
[3] Grenoble INP, GIPSA Lab DIS SIGMAPHY, F-38402 St Martin Dheres, France
[4] IETR, F-35042 Rennes, France
关键词
Image classification; non-Gaussian modeling; polarimetric synthetic aperture radar; statistical analysis; COVARIANCE-MATRIX; CLUTTER; DECOMPOSITION;
D O I
10.1109/JSTSP.2010.2101579
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical H - alpha decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts.
引用
收藏
页码:567 / 576
页数:10
相关论文
共 50 条
[41]   New algorithm of target classification in polarimetric SAR [J].
Wang Yang Lu Jiaguo Wu Xianliang Key Lab of Intelligent Computing Signal Processing of Ministry of Education Anhui Univ Heifei P R China The th Research Inst China Electronic Technology Corporation Hefei P R China .
Journal of Systems Engineering and Electronics, 2008, (02) :273-279
[42]   New algorithm of target classification in polarimetric SAR [J].
Wang Yang ;
Lu Jiaguo ;
Wu Xianliang .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (02) :273-279
[43]   A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images [J].
Fukuda, S ;
Hirosawa, H .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2282-2286
[44]   Unsupervised Classification for Multilook Polarimetric SAR Images via Double Dirichlet Process Mixture Model [J].
Li, Ze-Chen ;
Li, Heng-Chao ;
Gao, Gui ;
Hong, Wen ;
Emery, William J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 :1-16
[45]   Maximum Likelihood Classification of Single High-resolution Polarimetric SAR Images in Urban Areas [J].
Majd, Maryam Soheili ;
Simonetto, Elisabeth ;
Polidori, Laurent .
PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2012, (04) :395-407
[46]   Classification of Heterogeneous Scenes in POL-SAR Image Based on Statistical Analysis [J].
Wang, Kan ;
Yu, Xin ;
Gou, Shuiping .
PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, :2164-2169
[47]   A Comparative Study on Classification Features between High-Resolution and Polarimetric SAR Images through Unsupervised Classification Methods [J].
Qu, Junrong ;
Qiu, Xiaolan ;
Wang, Wei ;
Wang, Zezhong ;
Lei, Bin ;
Ding, Chibiao .
REMOTE SENSING, 2022, 14 (06)
[48]   Statistical Modeling of Polarimetric SAR Data: A Survey and Challenges [J].
Deng, Xinping ;
Lopez-Martinez, Carlos ;
Chen, Jinsong ;
Han, Pengpeng .
REMOTE SENSING, 2017, 9 (04)
[49]   A Physical Analysis of Polarimetric SAR Data Statistical Models [J].
Deng, Xinping ;
Lopez-Martinez, Carlos ;
Makhoul Varona, Eduardo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05) :3035-3048
[50]   Review on polarimetric SAR terrain classification methods using deep learning [J].
Xie W. ;
Hua W. ;
Jiao L. ;
Wang R. .
Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (03) :151-170