Statistical Classification for Heterogeneous Polarimetric SAR Images

被引:48
作者
Formont, Pierre [1 ,2 ]
Pascal, Frederic [2 ]
Vasile, Gabriel [3 ]
Ovarlez, Jean-Philippe [1 ,2 ]
Ferro-Famil, Laurent [4 ]
机构
[1] ONERA DEMR TSI, F-91761 Palaiseau, France
[2] Supelec SONDRA, F-91192 Gif Sur Yvette, France
[3] Grenoble INP, GIPSA Lab DIS SIGMAPHY, F-38402 St Martin Dheres, France
[4] IETR, F-35042 Rennes, France
关键词
Image classification; non-Gaussian modeling; polarimetric synthetic aperture radar; statistical analysis; COVARIANCE-MATRIX; CLUTTER; DECOMPOSITION;
D O I
10.1109/JSTSP.2010.2101579
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical H - alpha decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts.
引用
收藏
页码:567 / 576
页数:10
相关论文
共 50 条
[31]   Polarimetric SAR Image Terrain Classification [J].
West, R. Derek ;
LaBruyere, Thomas E., III ;
Skryzalin, Jacek ;
Simonson, Katherine M. ;
Hansen, Ross L. ;
Van Benthem, Mark H. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (11) :4467-4485
[32]   Comparison of Classification Accuracy between Fully Polarimetric and Dual-Polarization SAR Images [J].
Turkar, Varsha ;
Deo, Rinki ;
Hariharan, S. ;
Rao, Y. S. .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :440-443
[33]   Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features [J].
Masjedi, Ali ;
Zoej, Mohammad Javad Valadan ;
Maghsoudi, Yasser .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (02) :932-943
[34]   Meta-Learning Classification Network for Few-Shot Polarimetric SAR Images [J].
Luo, Huiqi ;
Jiang, Nana ;
Wang, Hui ;
Guo, Jiao ;
Zhu, Jubo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
[35]   Stacked auto-encoder for classification of polarimetric SAR images based on scattering energy [J].
Shang, Ronghua ;
Liu, Yongkun ;
Wang, Jiaming ;
Jiao, Licheng ;
Stolkin, Rustam .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (13) :5094-5120
[36]   Urban area classification with polarimetric statistical features of simulated data in PolSAR images [J].
Zheng, Junsheng ;
Zhang, Hai .
ELECTRONICS LETTERS, 2019, 55 (13) :761-+
[37]   POLARIMETRIC SAR IMAGES FOR CHARACTERIZATION OF URBAN TARGETS [J].
Aghababaei, Hossein ;
Ferraioli, Giampaolo ;
Zamani, Roghayeh .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :1701-1704
[38]   An Efficient Classification Method of Fully Polarimetric SAR Image Based on Polarimetric Features and Spatial Features [J].
Xue, Xiaorong ;
Di, Liping ;
Guo, Liying ;
Lin, Li .
2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
[39]   Classification of Chinese GaoFen-3 Fully-polarimetric SAR Images: Initial Results [J].
Xu, Lu ;
Zhang, Hong ;
Wang, Chao ;
Fu, Qiaoyan .
2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, :700-705
[40]   Unsupervised Classification of Fully Polarimetric SAR Images Based on Scattering Power Entropy and Copolarized Ratio [J].
Wang, Shuang ;
Liu, Kun ;
Pei, Jingjing ;
Gong, Maoguo ;
Liu, Yachao .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (03) :622-626