Statistical Classification for Heterogeneous Polarimetric SAR Images

被引:48
作者
Formont, Pierre [1 ,2 ]
Pascal, Frederic [2 ]
Vasile, Gabriel [3 ]
Ovarlez, Jean-Philippe [1 ,2 ]
Ferro-Famil, Laurent [4 ]
机构
[1] ONERA DEMR TSI, F-91761 Palaiseau, France
[2] Supelec SONDRA, F-91192 Gif Sur Yvette, France
[3] Grenoble INP, GIPSA Lab DIS SIGMAPHY, F-38402 St Martin Dheres, France
[4] IETR, F-35042 Rennes, France
关键词
Image classification; non-Gaussian modeling; polarimetric synthetic aperture radar; statistical analysis; COVARIANCE-MATRIX; CLUTTER; DECOMPOSITION;
D O I
10.1109/JSTSP.2010.2101579
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a general approach for high-resolution polarimetric SAR data classification in heterogeneous clutter, based on a statistical test of equality of covariance matrices. The Spherically Invariant Random Vector (SIRV) model is used to describe the clutter. Several distance measures, including classical ones used in standard classification methods, can be derived from the general test. The new approach provide a threshold over which pixels are rejected from the image, meaning they are not sufficiently "close" from any existing class. A distance measure using this general approach is derived and tested on a high-resolution polarimetric data set acquired by the ONERA RAMSES system. It is compared to the results of the classical H - alpha decomposition and Wishart classifier under Gaussian and SIRV assumption. Results show that the new approach rejects all pixels from heterogeneous parts of the scene and classifies its Gaussian parts.
引用
收藏
页码:567 / 576
页数:10
相关论文
共 50 条
[21]   SAR classification and polarimetric fusion [J].
Hauter, A ;
Chang, KC ;
Karp, S .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY III, 1996, 2757 :25-33
[22]   AGRICULTURAL LAND CLASSIFICATION BASED ON STATISTICAL ANALYSIS OF FULL POLARIMETRIC SAR DATA [J].
Mahdian, M. ;
Homayouni, S. ;
Fazel, M. A. ;
Mohammadimanesh, F. .
SMPR CONFERENCE 2013, 2013, 40-1-W3 :257-261
[23]   Superpixel-Based Classification With an Adaptive Number of Classes for Polarimetric SAR Images [J].
Liu, Bin ;
Hu, Hao ;
Wang, Huanyu ;
Wang, Kaizhi ;
Liu, Xingzhao ;
Yu, Wenxian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (02) :907-924
[24]   POLARIMETRIC SAR IMAGES CLASSIFICATION USING DEEP BELIEF NETWORKS WITH LEARNING FEATURES [J].
Hou, Biao ;
Luo, Xiaohuan ;
Wang, Shuang ;
Jiao, Licheng ;
Zhang, Xiangrong .
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, :2366-2369
[25]   Region-Based Classification of Polarimetric SAR Images Using Wishart MRF [J].
Wu, Yonghui ;
Ji, Kefeng ;
Yu, Wenxian ;
Su, Yi .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) :668-672
[26]   Three-Channel Convolutional Neural Network for Polarimetric SAR Images Classification [J].
Hua, Wenqiang ;
Xie, Wen ;
Jin, Xiaomin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) :4895-4907
[27]   Variational Textured Dirichlet Process Mixture Model With Pairwise Constraint for Unsupervised Classification of Polarimetric SAR Images [J].
Liu, Chi ;
Li, Heng-Chao ;
Liao, Wenzhi ;
Philips, Wilfried ;
Emery, William J. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (08) :4145-4160
[28]   Land Cover Classification of Polarimetric SAR Images for the Yellow River Delta Based on Support Vector Machine [J].
Xu Juan ;
Li Zhen ;
Lei Liping ;
Tian Bangsen ;
Shan Zili .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, :256-261
[29]   Unsupervised classification of polarimetric SAR images via SVG0pMM with extended variational inference [J].
Li, Ze-Chen ;
Li, Heng-Chao ;
Gao, Gui ;
Hua, Ze-Xi ;
Zhang, Fan ;
Hong, Wen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 :256-269
[30]   Exploring Vision Transformers for Polarimetric SAR Image Classification [J].
Dong, Hongwei ;
Zhang, Lamei ;
Zou, Bin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60