Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids

被引:74
作者
Boldrini, JL
Rojas-Medar, MA
Fernández-Cara, E
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[2] Univ Sevilla, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2003年 / 82卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
semi-Galerkin approximation; strong solutions; asymmetric fluids;
D O I
10.1016/j.matpur.2003.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes an initial/boundary value problem for a system of equations modelling the nonstationary flow of a nonhomogeneous incompressible asymmetric (polar) fluid. Under conditions similar to those usually imposed to the nonhomogeneous 3D Navier-Stokes equations, using a spectral semi-Galerkin method, we prove the existence of a local in time strong solution. We also prove the uniqueness of the strong solution and some global existence results. Several estimates for the solutions and their approximations are given. These can be used to find useful error bounds of the Galerkin approximations. (C) 2003 tditions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:1499 / 1525
页数:27
相关论文
共 19 条
[1]   ON THE EXISTENCE AND REGULARITY OF THE SOLUTION OF STOKES PROBLEM IN ARBITRARY DIMENSION [J].
AMROUCHE, C ;
GIRAULT, V .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (05) :171-175
[2]  
Boldrini J.L., 1997, NUMERICAL METHODS ME, V371
[3]  
BOLDRINI JL, 1996, RAIRO-MATH MODEL NUM, V30, P123
[4]   FLUID MECHANICAL ASPECTS OF ANTISYMMETRIC STRESS [J].
CONDIFF, DW ;
DAHLER, JS .
PHYSICS OF FLUIDS, 1964, 7 (06) :842-854
[5]  
Heywood J.G., 1980, LECT NOTES MATH, V771, P235
[7]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[8]  
KIM JU, 1987, SIAM J MATH ANAL, V18, P890
[9]  
LADYZHENSKAYA O., 1978, J SOVIET MATH, V9, P697, DOI DOI 10.1007/BF01085325
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS