Thermochemistry of Racemic and Enantiopure Organic Crystals for Predicting Enantiomer Separation

被引:37
作者
Buchholz, Hannes K. [1 ]
Hylton, Rebecca K. [1 ,2 ]
Brandenburg, Jan Gerit [2 ]
Seidel-Morgenstern, Andreas [1 ]
Lorenz, Heike [1 ]
Stein, Matthias [1 ]
Price, Sarah L. [2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会;
关键词
TEMPERATURE THERMODYNAMIC PROPERTIES; INTRINSIC AQUEOUS SOLUBILITY; MOLECULAR-CRYSTALS; HEAT-CAPACITY; PHONON FREQUENCIES; LATTICE ENERGY; MELTING-POINT; PHASE; CRYSTALLIZATION; IMPLEMENTATION;
D O I
10.1021/acs.cgd.7b00582
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The separation of an enantiomer from a racemic mixture is of primary relevance to the pharmaceutical industry. The thermochemical properties of organic enantiopure and racemate crystals can be exploited to design an enantioselective crystallization process. The thermodynamic difference between the two crystal forms is accessible by two cycles which give the eutectic composition in solution. The "sublimation cycle" requires calculating the lattice energy and phonon frequencies of the crystal structures. Experimental results from heat capacity and other thermodynamic measurements of enantiopure and racemic crystals are compared with a variety of molecular and crystal structure-based calculations. This is done for three prototypes of pharmaceutical-like molecules with different degrees of molecular flexibility. Differences in crystal packing result in varying temperature-dependent heat capacities and affect the sublimation thermodynamics, relative solubility, and eutectic composition. Many simplifying assumptions about the thermodynamics and solubilities of the racemic and enantiopure crystals are critically evaluated. We show that calculations and experimental information using the sublimation cycle can guide the design of processes to resolve enantiomers by crystallization.
引用
收藏
页码:4676 / 4686
页数:11
相关论文
共 83 条
[61]   Predicting intrinsic aqueous solubility by a thermodynamic cycle [J].
Palmer, David S. ;
Llinas, Antonio ;
Morao, Inaki ;
Day, Graeme M. ;
Goodman, Jonathan M. ;
Glen, Robert C. ;
Mitchell, John B. O. .
MOLECULAR PHARMACEUTICS, 2008, 5 (02) :266-279
[62]   First-Principles Calculation of the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules [J].
Palmer, David S. ;
McDonagh, James L. ;
Mitchell, John B. O. ;
van Mourik, Tanja ;
Fedorov, Maxim V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3322-3337
[63]   The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code [J].
Pascale, F ;
Zicovich-Wilson, CM ;
Gejo, FL ;
Civalleri, B ;
Orlando, R ;
Dovesi, R .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (06) :888-897
[64]   Low-temperature thermodynamic properties of L-cysteine [J].
Paukov, I. E. ;
Kovalevskaya, Yulia A. ;
Boldyreva, Elena V. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 93 (02) :423-428
[65]   Low-temperature thermodynamic properties of L- and DL-valines [J].
Paukov, I. E. ;
Kovalevskaya, Yulia A. ;
Boldyreva, Elena V. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 111 (01) :905-910
[66]   Low-temperature heat capacity of L- and DL-phenylglycines [J].
Paukov, I. E. ;
Kovalevskaya, Yulia A. ;
Boldyreva, Elena V. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 108 (03) :1311-1316
[67]   Low-temperature thermodynamic properties of dl-cysteine [J].
Paukov, I. E. ;
Kovalevskaya, Yulia A. ;
Boldyreva, Elena V. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 100 (01) :295-301
[68]   Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials [J].
Price, Sarah L. ;
Leslie, Maurice ;
Welch, Gareth W. A. ;
Habgood, Matthew ;
Price, Louise S. ;
Karamertzanis, Panagiotis G. ;
Day, Graeme M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (30) :8478-8490
[69]   Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE) [J].
Ran, YQ ;
Jain, N ;
Yalkowsky, SH .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (05) :1208-1217
[70]   STRUCTURE OF NAPROXEN, C14H14O3 [J].
RAVIKUMAR, K ;
RAJAN, SS ;
PATTABHI, V .
ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1985, 41 (FEB) :280-282