ARBITRAGE AND DUALITY IN NONDOMINATED DISCRETE-TIME MODELS

被引:117
|
作者
Bouchard, Bruno [1 ,2 ]
Nutz, Marcel [3 ]
机构
[1] Univ Paris 09, F-75775 Paris 16, France
[2] CREST ENSAE, Paris, France
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
来源
ANNALS OF APPLIED PROBABILITY | 2015年 / 25卷 / 02期
基金
美国国家科学基金会;
关键词
Knightian uncertainty; nondominated model; Fundamental Theorem of Asset Pricing; martingale measure; superhedging; optional decomposition; CONTINGENT CLAIMS; FUNDAMENTAL THEOREM; PRICES;
D O I
10.1214/14-AAP1011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a nondominated model of a discrete-time financial market where stocks are traded dynamically, and options are available for static hedging. In a general measure-theoretic setting, we show that absence of arbitrage in a quasi-sure sense is equivalent to the existence of a suitable family of martingale measures. In the arbitrage-free case, we show that optimal superhedging strategies exist for general contingent claims, and that the minimal superhedging price is given by the supremum over the martingale measures. Moreover, we obtain a nondominated version of the Optional Decomposition Theorem.
引用
收藏
页码:823 / 859
页数:37
相关论文
共 50 条