Enabling adaptive pedestals in predictive transport simulations using neural networks

被引:10
作者
Gillgren, A. [1 ]
Fransson, E. [1 ]
Yadykin, D. [1 ]
Frassinetti, L. [2 ]
Strand, P. [1 ]
机构
[1] Chalmers Univ Technol, Dept Space Earth & Environm, SE-41296 Gothenburg, Sweden
[2] KTH Royal Inst Technol, Div Fus Plasma Phys, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
fusion; pedestal; AI; machine learning; neural networks; integrated modeling; CONFINEMENT; MODEL;
D O I
10.1088/1741-4326/ac7536
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present PEdestal Neural Network (PENN) as a machine learning model for tokamak pedestal predictions. Here, the model is trained using the EUROfusion JET pedestal database to predict the electron pedestal temperature and density from a set of global engineering and plasma parameters. Results show that PENN makes accurate predictions on the test set of the database, with R (2) = 0.93 for the temperature, and R (2) = 0.91 for the density. To demonstrate the applicability of the model, PENN is employed in the European transport simulator (ETS) to provide boundary conditions for the core of the plasma. In a case example in the ETS with varied neutral beam injection (NBI) power, results show that the model is consistent with previous studies regarding NBI power dependency on the pedestal. Additionally, we show how an uncertainty estimation method can be used to interpret the reliability of the predictions. Future work includes further analysis of how pedestal models, such as PENN, or other advanced deep learning models, can be more efficiently implemented in integrating modeling frameworks, and also how similar models may be generalized with respect to other tokamaks and future device scenarios.
引用
收藏
页数:14
相关论文
共 30 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/2951913.2976746, 10.1145/3022670.2976746]
[2]   Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling [J].
Angioni, C. ;
Peeters, A. G. ;
Pereverzev, G. V. ;
Bottino, A. ;
Candy, J. ;
Dux, R. ;
Fable, E. ;
Hein, T. ;
Waltz, R. E. .
NUCLEAR FUSION, 2009, 49 (05)
[3]  
[Anonymous], 2016, DEEP LEARNING
[4]   Modelling neutral beams in fusion devices: Beam let-based model for fast particle simulations [J].
Asunta, O. ;
Govenius, J. ;
Budny, R. ;
Gorelenkova, M. ;
Tardini, G. ;
Kurki-Suonio, T. ;
Salmi, A. ;
Sipilae, S. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 188 :33-46
[5]   Global and pedestal confinement in JET with a Be/W metallic wall [J].
Beurskens, M. N. A. ;
Frassinetti, L. ;
Challis, C. ;
Giroud, C. ;
Saarelma, S. ;
Alper, B. ;
Angioni, C. ;
Bilkova, P. ;
Bourdelle, C. ;
Brezinsek, S. ;
Buratti, P. ;
Calabro, G. ;
Eich, T. ;
Flanagan, J. ;
Giovannozzi, E. ;
Groth, M. ;
Hobirk, J. ;
Joffrin, E. ;
Leyland, M. J. ;
Lomas, P. ;
de la Luna, E. ;
Kempenaars, M. ;
Maddison, G. ;
Maggi, C. ;
Mantica, P. ;
Maslov, M. ;
Matthews, G. ;
Mayoral, M-L ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Rimini, F. ;
Scannell, R. ;
Solano, E. R. ;
Snyder, P. B. ;
Voitsekhovitch, I. ;
de Vries, Peter .
NUCLEAR FUSION, 2014, 54 (04)
[6]   A two-term model of the confinement in Elmy H-modes using the global confinement and pedestal databases [J].
Cordey, JG .
NUCLEAR FUSION, 2003, 43 (08) :670-674
[7]   The European Transport Solver [J].
Coster, David P. ;
Basiuk, Vincent ;
Pereverzev, Grigori ;
Kalupin, Denis ;
Zagorski, Roman ;
Stankiewicz, Roman ;
Huynh, Philippe ;
Imbeaux, Frederic .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (09) :2085-2092
[8]   The role of the source versus the collisionality in predicting a reactor density profile as observed on ASDEX Upgrade discharges [J].
Fable, E. ;
Angioni, C. ;
Bobkov, V ;
Stober, J. ;
Bilato, R. ;
Conway, G. D. ;
Goerler, T. ;
McDermott, R. M. ;
Puetterich, T. ;
Siccinio, M. ;
Suttrop, W. ;
Teschke, M. ;
Zohm, H. .
NUCLEAR FUSION, 2019, 59 (07)
[9]   Comparing particle transport in JET and DIII-D plasmas: gyrokinetic and gyrofluid modelling [J].
Fransson, E. ;
Eriksson, F. ;
Oberparleiter, M. ;
Held, M. ;
Mordijck, S. ;
Nordman, H. ;
Salmi, A. ;
Strand, P. ;
Tala, T. .
NUCLEAR FUSION, 2021, 61 (01)
[10]   Pedestal structure, stability and scalings in JET-ILW: the EUROfusion JET-ILW pedestal database [J].
Frassinetti, L. ;
Saarelma, S. ;
Verdoolaege, G. ;
Groth, M. ;
Hillesheim, J. C. ;
Bilkova, P. ;
Bohm, P. ;
Dunne, M. ;
Fridstrom, R. ;
Giovannozzi, E. ;
Imbeaux, F. ;
Labit, B. ;
de la Luna, E. ;
Maggi, C. ;
Owsiak, M. ;
Scannell, R. .
NUCLEAR FUSION, 2021, 61 (01)