Probing relaxation dynamics of a few strongly correlated bosons in a 1D triple well optical lattice

被引:14
作者
Bera, S. [1 ]
Roy, R. [1 ]
Gammal, A. [2 ]
Chakrabarti, B. [1 ,2 ,3 ]
Chatterjee, B. [4 ]
机构
[1] Presidency Univ, Dept Phys, 86-1 Coll St, Kolkata 700073, India
[2] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[3] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[4] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
基金
巴西圣保罗研究基金会;
关键词
interaction quench; lattice depth quench; information entropy; QUANTUM; SUPERFLUID; INSULATOR; GAS;
D O I
10.1088/1361-6455/ab2999
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The relaxation process of a few strongly interacting bosons in a triple well optical lattice is studied from the first principle using the multiconfigurational time-dependent Hartree method for bosons. We report the contrasting response of the system under two independent quench processes: an interaction quench and a lattice depth quench. We analyze the evolution of the reduced one-body density matrix, two-body density and the Shannon information entropy for a wide range of lattice depth and interaction strength parameters. For the strong interaction quench, we observe a very fast relaxation to the steady state. In contrast, for the lattice depth quench, we observe collapse-revival dynamics in all the key measures. We also provide the best fitting formulas for relaxation and revival time which follow power law decay.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Unified view on multiconfigurational time propagation for systems consisting of identical particles [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (15)
[2]   Multiorbital mean-field approach for bosons, spinor bosons, and Bose-Bose and Bose-Fermi mixtures in real-space optical lattices [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2007, 76 (01)
[3]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[4]   Correlation functions of cold bosons in an optical lattice [J].
Bach, R ;
Rzaazewski, K .
PHYSICAL REVIEW A, 2004, 70 (06) :063622-1
[5]   Irregular dynamics in a one-dimensional Bose system [J].
Berman, GP ;
Borgonovi, F ;
Izrailev, FM ;
Smerzi, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[6]   Slow Quench Dynamics of a One-Dimensional Bose Gas Confined to an Optical Lattice [J].
Bernier, Jean-Sebastien ;
Roux, Guillaume ;
Kollath, Corinna .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[7]   Commensurate-incommensurate transition of cold atoms in an optical lattice -: art. no. 130401 [J].
Büchler, HP ;
Blatter, G ;
Zwerger, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[8]   Constructing the Generalized Gibbs Ensemble after a Quantum Quench [J].
Caux, Jean-Sebastien ;
Konik, Robert M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[9]   Light-cone-like spreading of correlations in a quantum many-body system [J].
Cheneau, Marc ;
Barmettler, Peter ;
Poletti, Dario ;
Endres, Manuel ;
Schauss, Peter ;
Fukuhara, Takeshi ;
Gross, Christian ;
Bloch, Immanuel ;
Kollath, Corinna ;
Kuhr, Stefan .
NATURE, 2012, 481 (7382) :484-487
[10]   Quantum quench in a harmonically trapped one-dimensional Bose gas [J].
Collura, Mario ;
Kormos, Marton ;
Calabrese, Pasquale .
PHYSICAL REVIEW A, 2018, 97 (03)