Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model

被引:26
作者
Chen, Huajie [1 ,2 ]
Gong, Xingao [3 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
eigenvalue; Galerkin discretization; nonlinear; numerical approximation; density functional; orbital-free; GROUND-STATE SOLUTION; FINITE-DIMENSIONAL APPROXIMATIONS; REAL-SPACE METHOD; THOMAS-FERMI; MOLECULAR-DYNAMICS; TOTAL-ENERGY; CONVERGENCE; ATOMS; ALGORITHMS;
D O I
10.1002/mma.1292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study numerical approximations of a nonlinear eigenvalue problem and consider applications to a density functional model. We prove the convergence of numerical approximations. In particular, we establish several upper bounds of approximation errors and report some numerical results of finite element electronic structure calculations that support our theory. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1723 / 1742
页数:20
相关论文
共 56 条