On L-convergence of trigonometric series

被引:17
作者
Szal, Bogdan [1 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
关键词
Trigonometric series; Fourier series; L-convergence; Embedding relations; FOURIER-SERIES; L-1-CONVERGENCE; L1-CONVERGENCE;
D O I
10.1016/j.jmaa.2010.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we consider the trigonometric series with (beta, r)-general monotone and (beta, r)-rest bounded variation coefficients. Necessary and sufficient conditions of L-convergence for such series are obtained in terms of the coefficients. Moreover, we generalize and extend the Tikhonov results [J. Math. Anal. Appl. 347 (2008) 416-427] to the class GM(beta, r) or the class RBVS(beta, r). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 19 条
[1]  
Belov A.S., 1998, IZV TUL GOS U MMI, V4, P40
[2]   Remarks on mean convergence (boundedness) of partial sums of trigonometric series [J].
Belov, AS .
MATHEMATICAL NOTES, 2002, 71 (5-6) :739-748
[3]  
Fridli S, 1997, STUD MATH, V125, P161
[4]   L1-CONVERGENCE OF FOURIER-SERIES WITH QUASI-MONOTONE COEFFICIENTS [J].
GARRETT, JW ;
REES, CS ;
STANOJEVIC, CV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (03) :535-538
[5]   A new condition for the uniform convergence of certain trigonometric series [J].
Le, RJ ;
Zhou, SP .
ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) :161-169
[6]  
Leindler L., 2001, ANAL MATH, V27, P279
[7]   L1-CONVERGENCE OF FOURIER-SERIES WITH O-REGULARLY VARYING QUASIMONOTONIC COEFFICIENTS [J].
STANOJEVIC, VB .
JOURNAL OF APPROXIMATION THEORY, 1990, 60 (02) :168-173
[8]  
SZAL B, NEW CLASS NUMERICAL
[9]  
TELJAKOVSKII SA, 1975, P STEKLOV I MATH, V134, P351
[10]  
TELJAKOVSKIL SA, 2003, APPROXIMATION FUNCTI, P240