Weak Convergence of the Regularization Path in Penalized M-Estimation

被引:1
作者
Germain, Jean-Francois [1 ]
Roueff, Francois [1 ]
机构
[1] TELECOM ParisTech, Inst TELECOM, CNRS, LTCI, F-75634 Paris 13, France
关键词
Akaike information criterion (AIC); lasso; pathwise argmin theorem; penalized M-estimation; regularization path; weak convergence; SELECTION; ASYMPTOTICS; REGRESSION; LASSO;
D O I
10.1111/j.1467-9469.2009.00682.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a function defined as the pointwise minimization of a doubly index random process. We are interested in the weak convergence of the minimizer in the space of bounded functions. Such convergence results can be applied in the context of penalized M-estimation, that is, when the random process to minimize is expressed as a goodness-of-fit term plus a penalty term multiplied by a penalty weight. This weight is called the regularization parameter and the minimizing function the regularization path. The regularization path can be seen as a collection of estimators indexed by the regularization parameter. We obtain a consistency result and a central limit theorem for the regularization path in a functional sense. Various examples are provided, including the l1-regularization path for general linear models, the l1- or l2-regularization path of the least absolute deviation regression and the Akaike information criterion.
引用
收藏
页码:477 / 495
页数:19
相关论文
共 21 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[2]  
[Anonymous], 1970, CONVEX ANAL
[3]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[4]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[5]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]  
GERMAIN JF, 2007, CS BIGS, V1, P164
[8]   Persistence in high-dimensional linear predictor selection and the virtue of overparametrization [J].
Greenshtein, E ;
Ritov, Y .
BERNOULLI, 2004, 10 (06) :971-988
[9]   CONCAVITY AND ESTIMATION [J].
HABERMAN, SJ .
ANNALS OF STATISTICS, 1989, 17 (04) :1631-1661
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&