Modelling the Persuadee in Asymmetric Argumentation Dialogues for Persuasion

被引:0
|
作者
Hunter, Anthony [1 ]
机构
[1] UCL, Dept Comp Sci, London, England
来源
PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI) | 2015年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computational models of argument could play a valuable role in persuasion technologies for behaviour change (e.g. persuading a user to eat a more healthy diet, or to drink less, or to take more exercise, or to study more conscientiously, etc). For this, the system (the persuader) could present arguments to convince the user (the persuadee). In this paper, we consider asymmetric dialogues where only the system presents arguments, and the system maintains a model of the user to determine the best choice of arguments to present (including counterarguments to key arguments believed to be held by the user). The focus of the paper is on the user model, including how we update it as the dialogue progresses, and how we use it to make optimal choices for dialogue moves.
引用
收藏
页码:3055 / 3061
页数:7
相关论文
共 50 条
  • [1] Strategic argumentation dialogues for persuasion: Framework and experiments based on modelling the beliefs and concerns of the persuadee
    Hadoux, Emmanuel
    Hunter, Anthony
    Polberg, Sylwia
    ARGUMENT & COMPUTATION, 2023, 14 (02) : 109 - 161
  • [2] Persuadee Modelling in Computational Argumentation in Marketing
    Dellunde, Pilar
    Mantilla, Marco
    Sabater-Mir, Jordi
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2017, 300 : 215 - 220
  • [3] Two Dimensional Uncertainty in Persuadee Modelling in Argumentation
    Hunter, Anthony
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 150 - 157
  • [4] Modelling dialogues using argumentation
    Amgoud, L
    Maudet, N
    Parsons, S
    FOURTH INTERNATIONAL CONFERENCE ON MULTIAGENT SYSTEMS, PROCEEDINGS, 2000, : 31 - 38
  • [5] Modelling Dialogues in a Concurrent Language for Argumentation
    Bistarelli, Stefano
    Chiara, Maria M.
    Taticchi, Carlo
    LOGIC PROGRAMMING AND NONMONOTONIC REASONING, LPNMR 2024, 2025, 15245 : 277 - 290
  • [6] Towards Computational Persuasion via Natural Language Argumentation Dialogues
    Hunter, Anthony
    Chalaguine, Lisa
    Czernuszenko, Tomasz
    Hadoux, Emmanuel
    Polberg, Sylwia
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019, 2019, 11793 : 18 - 33
  • [7] Persuasion Dialogues via Restricted Interfaces Using Probabilistic Argumentation
    Hunter, Anthony
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 184 - 198
  • [8] Argumentation based modelling of embedded agent dialogues
    Dimopoulos, Yannis
    Kakas, Antonis C.
    Moraitis, Pavlos
    ARGUMENTATION IN MULTI-AGENT SYSTEMS, 2006, 4049 : 169 - 181
  • [9] EFFICIENCY IN PERSUASION DIALOGUES
    Atkinson, Katie
    Bench-Capon, Priscilla
    Bench-Capon, Trevor
    ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL. 2, 2012, : 23 - 32
  • [10] Argumentation: The Art of Persuasion
    Killeen, Peter R.
    AMERICAN JOURNAL OF PSYCHOLOGY, 2022, 135 (04): : 422 - 427