First Demonstration of Ferroelectric Tunnel Thin-Film Transistor Nonvolatile Memory With Polycrystalline-Silicon Channel and HfZrOx Gate Dielectric

被引:8
作者
Ma, William Cheng-Yu [1 ]
Su, Chun-Jung [2 ]
Kao, Kuo-Hsing [3 ]
Lee, Yao-Jen [4 ]
Lin, Ju-Heng [1 ]
Wu, Pin-Hua [1 ]
Chang, Jui-Che [1 ]
Yen, Cheng-Lun [1 ]
Tseng, Hsin-Chun [1 ]
Liao, Hsu-Tang [1 ]
Chou, Yu-Wen [1 ]
Chiu, Min-Yu [1 ]
Chen, Yan-Qing [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 804, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan
[3] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 701, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Inst Pioneer Semicond Innovat, Hsinchu 30010, Taiwan
关键词
Ferroelectric transistor; nonvolatile memory (NVM); polycrystalline-silicon (poly-Si) channel; thin-film transistor (TFT); tunnel transistor; FET;
D O I
10.1109/TED.2022.3208847
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, the nonvolatile memory constructed on the tunnel thin-film transistors (tunnel-TFTs) using polycrystalline-silicon channel featuring ferroelectric HfZrOx layer is demonstrated for the first time. When the pulse voltages of program (PG) and erase (ER) are, respectively, 3.5 and -2 V with the pulsewidth of 1 mu s, the threshold voltage modulation amount of the ferroelectric tunnel-TFT can reach -0.524 and 0.496 V, respectively. In addition, the endurance behaviors of the ferroelectric tunnel-TFT exhibit a strong PG/ER pulsewidth dependence. The wake- up effect of the ferroelectric layer becomes more pronounced as increasing the PG/ER pulsewidth. Moreover, the increase of the PG/ER pulsewidth also causes the ferroelectric tunnel-TFT to be subjected to the electrical dynamic stress effect, leading to the degradation of the subthreshold swing (SS) and the electron trapping effect. When the pulsewidth is 100 ns, the endurance is mainly dominated by the fatigue effect of the ferroelectric layer and the degradation of the SS. When the pulsewidth increases to 1 mu s, the endurance is mainly dominated by the electron trapping effect of the ferroelectric layer in addition to the fatigue effect. The retention of the ferroelectric tunnel-TFT exhibits stable behavior at 50 degrees C. Consequently, the ferroelectric tunnel-TFT exhibits sufficient electrical performance and can be integrated with display panels and various sensor systems on smart wearable devices for edge computing applications.
引用
收藏
页码:6072 / 6077
页数:6
相关论文
共 50 条
[41]   Characteristics of polycrystalline silicon thin-film transistors with electrical source/drain extensions induced by a bottom sub-gate [J].
Yu, M ;
Lin, HC ;
Chen, GH ;
Huang, TY ;
Lei, TF .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (5A) :2815-2820
[42]   Reliability and memory characteristics of sequential laterally solidified low temperature polycrystalline silicon thin film transistors with an oxide-nitride-oxide stack gate dielectric [J].
Hsieh, Szu-I ;
Chen, Hung-Tse ;
Chen, Yu-g Chen ;
Chen, Chi-Lin ;
Lin, Jia-Xing ;
King, Ya-Chin .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (4B) :3154-3158
[43]   A polycrystalline silicon thin-film transistor with self-aligned metal electrodes formed using aluminum-induced crystallization [J].
Zhang, Dongli ;
Chow, Thomas ;
Wong, Man .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (08) :2181-2186
[44]   Improved Performance of Amorphous InGaZnO Thin-Film Transistor by Hf Incorporation in La2O3 Gate Dielectric [J].
Song, J. Q. ;
Qian, L. X. ;
Lai, Peter T. .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2018, 18 (03) :333-336
[45]   High-Performance a-IGZO Thin-Film Transistor Using Ta2O5 Gate Dielectric [J].
Chiu, C. J. ;
Chang, S. P. ;
Chang, S. J. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (11) :1245-1247
[46]   Amorphous silicon film deposition by low temperature catalytic chemical vapor deposition (<150°C) and laser crystallization for polycrystalline silicon thin-film transistor application [J].
Lee, SH ;
Hong, WS ;
Kim, JM ;
Lim, H ;
Park, KB ;
Cho, CL ;
Lee, KE ;
Kim, DY ;
Jung, JS ;
Kwon, JY ;
Noguchi, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2006, 45 (8-11) :L227-L229
[47]   Fabrication of Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor on Flexible Substrate Using a Polymer Electrolyte as Gate Dielectric [J].
Samanta, Chandan ;
Ghimire, Rishi Ram ;
Ghosh, Barnali .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (07) :2827-2832
[48]   Improved Performance of Amorphous InGaZnO Thin-Film Transistor With Ta2O5 Gate Dielectric by Using La Incorporation [J].
Qian, L. X. ;
Liu, X. Z. ;
Han, C. Y. ;
Lai, P. T. .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2014, 14 (04) :1056-1060
[49]   Low temperature Ni-nanocrystals-assisted hybrid polycrystalline silicon thin film transistor for non-volatile memory applications [J].
Wang, Terry Tai-Jui ;
Ma, William Cheng-Yu ;
Hung, Shih-Wei ;
Kuo, Cheng-Tzu .
THIN SOLID FILMS, 2010, 518 (24) :7429-7432
[50]   High-performance solid-phase crystallized polycrystalline silicon thin-film transistors with floating-channel structure [J].
Chang, Chia-Wen ;
Deng, Chih-Kang ;
Chang, Che-Lun ;
Liao, Ta-Chuan ;
Lei, Tan-Fu .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (04) :3024-3027