ARANKINGS OF TREES

被引:0
|
作者
Pillone, D.
机构
[1] Brielle, NJ
关键词
minimal ranking; coloring; tree; RANKINGS;
D O I
10.7151/dmgt.2090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a function f : V(G) -> {1, 2, ... , k} is a k-ranking for G if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A minimal k-ranking, f, of a graph, G, is a k-ranking with the property that decreasing the label of any vertex results in the ranking property being violated. The rank number chi(r)(G) and the arank number psi(r)(G) are, respectively, the minimum and maximum value of k such that G has a minimal k-ranking. This paper establishes an upper bound for psi(r) of a tree and shows the bound is sharp for perfect k-ary trees.
引用
收藏
页码:415 / 437
页数:23
相关论文
共 50 条
  • [41] On the decomposition dimension of trees
    Enomoto, H
    Nakamigawa, T
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 219 - 225
  • [42] Thue choosability of trees
    Fiorenzi, Francesca
    Ochem, Pascal
    Ossona de Mendez, Patrice
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 2045 - 2049
  • [43] Multidimensional bipartite trees
    Beineke, LW
    Pippert, RE
    DISCRETE MATHEMATICS, 2003, 272 (01) : 17 - 26
  • [44] The rupture degree of trees
    Li, Yinkui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1629 - 1635
  • [45] THE CONTACT PROCESS ON TREES
    PEMANTLE, R
    ANNALS OF PROBABILITY, 1992, 20 (04) : 2089 - 2116
  • [46] On the connectivity index of trees
    Yue Jiang
    Mei Lu
    Journal of Mathematical Chemistry, 2008, 43 : 955 - 965
  • [47] Vertex identification in trees
    Kono, Yuya
    Zhang, Ping
    DISCRETE MATHEMATICS LETTERS, 2021, 7 : 66 - 73
  • [48] SUBSET COUNTING IN TREES
    Wagner, Stephan G.
    ARS COMBINATORIA, 2008, 89 : 127 - 139
  • [49] On Sombor index of trees
    Das, Kinkar Chandra
    Gutman, Ivan
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 412
  • [50] Diameter minimal trees
    Johnson, Charles R.
    Saiago, Carlos M.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03) : 557 - 571