ARANKINGS OF TREES

被引:0
|
作者
Pillone, D.
机构
[1] Brielle, NJ
关键词
minimal ranking; coloring; tree; RANKINGS;
D O I
10.7151/dmgt.2090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G = (V, E), a function f : V(G) -> {1, 2, ... , k} is a k-ranking for G if f(u) = f(v) implies that every u - v path contains a vertex w such that f(w) > f(u). A minimal k-ranking, f, of a graph, G, is a k-ranking with the property that decreasing the label of any vertex results in the ranking property being violated. The rank number chi(r)(G) and the arank number psi(r)(G) are, respectively, the minimum and maximum value of k such that G has a minimal k-ranking. This paper establishes an upper bound for psi(r) of a tree and shows the bound is sharp for perfect k-ary trees.
引用
收藏
页码:415 / 437
页数:23
相关论文
共 50 条
  • [21] STRUCTURAL THEORY OF TREES II. COMPLETENESS AND COMPLETIONS OF TREES
    Kellerman, Ruaan
    Zanardo, Alberto
    Goranko, Valentin
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2023, 18 (02) : 210 - 233
  • [22] Some relations on the ordering of trees by minimal energies between subclasses of trees
    Ma H.
    Journal of Applied Mathematics and Computing, 2014, 45 (1-2) : 111 - 135
  • [23] ARITHMETIC EXPRESSIONS AND TREES
    REDZIEWJ.RR
    COMMUNICATIONS OF THE ACM, 1969, 12 (02) : 81 - &
  • [24] Trees, Stumps, and Applications
    Butcher, John C.
    AXIOMS, 2018, 7 (03)
  • [25] Reversible Adaptive Trees
    Kergosien, Yannick L.
    ACTA BIOTHEORETICA, 2013, 61 (03) : 413 - 424
  • [26] The smallest hard trees
    Manuel Bodirsky
    Jakub Bulín
    Florian Starke
    Michael Wernthaler
    Constraints, 2023, 28 : 105 - 137
  • [27] Rainbow domination on trees
    Chang, Gerard J.
    Wu, Jiaojiao
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (01) : 8 - 12
  • [28] Domination Numbers of Trees
    Jou, Min-Jen
    Lin, Jenq-Jong
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 319 - 321
  • [29] On the status sequences of trees
    Abiad, Aida
    Brimkov, Boris
    Grigoriev, Alexander
    THEORETICAL COMPUTER SCIENCE, 2021, 856 : 110 - 120
  • [30] On The Harmonious Colouring of Trees
    Aflaki, A.
    Akbari, S.
    Eskandani, D. S.
    Jamaali, M.
    Ravanbod, H.
    ARS COMBINATORIA, 2016, 128 : 55 - 62