IMPLICIT RUNGE-KUTTA METHODS AND DISCONTINUOUS GALERKIN DISCRETIZATIONS FOR LINEAR MAXWELL'S EQUATIONS

被引:22
作者
Hochbruck, Marlis [1 ]
Pazur, Tomislav [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
implicit Runge-Kutta methods; time integration; discontinuous Galerkin finite elements; error analysis; evolution equations; Maxwell's equations; RATIONAL-APPROXIMATIONS; TIME DISCRETIZATION; CONVERGENCE; STABILITY;
D O I
10.1137/130944114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider implicit Runge-Kutta methods for the time integration of linear Maxwell's equations. We first present error bounds for the abstract Cauchy problem which respect the unboundedness of the differential operators using energy techniques. The error bounds hold for algebraically stable and coercive methods such as Gauss and Radau collocation methods. The results for the abstract evolution equation are then combined with a discontinuous Galerkin discretization in space using upwind fluxes. For the case that permeability and permittivity are piecewise constant functions, we show error bounds for the full discretization, where the constants do not deteriorate if the spatial mesh width tends to zero.
引用
收藏
页码:485 / 507
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 2012, MATH APPL BERLIN
[2]  
[Anonymous], 1996, SPRINGER SER COMPUT
[3]  
BRENNER P, 1982, RAIRO-ANAL NUMER-NUM, V16, P5
[4]   RATIONAL APPROXIMATIONS OF SEMIGROUPS [J].
BRENNER, P ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :683-694
[5]   RATIONAL-APPROXIMATIONS OF GROUPS OF OPERATORS [J].
BRENNER, P ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (01) :119-125
[6]   EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR FIRST-ORDER LINEAR PDE SYSTEMS [J].
Burman, Erik ;
Ern, Alexandre ;
Fernandez, Miguel A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2019-2042
[7]   High-order RKDG methods for computational electromagnetics [J].
Chen, MH ;
Cockburn, B ;
Reitich, F .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :205-226
[8]   Locally implicit discontinuous Galerkin method for time domain electromagnetics [J].
Dolean, Victorita ;
Fahs, Hassan ;
Fezoui, Loula ;
Lanteri, Stephane .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) :512-526
[9]  
Engel K.J., 2000, Oneparameter semigroups for linear evolution equations
[10]   Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes [J].
Fezoui, L ;
Lanteri, S ;
Lohrengel, S ;
Piperno, S .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1149-1176