Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

被引:198
作者
Fezoui, L
Lanteri, S
Lohrengel, S
Piperno, S
机构
[1] INRIA, CERMICS, F-06902 Sophia Antipolis, France
[2] UNSA, Dieudonne Lab, CNRS, UMR 6621, F-06108 Nice, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2005年 / 39卷 / 06期
关键词
electromagnetics; finite volume methods; discontinuous Galerkin methods; centered fluxes; leap-frog time scheme; L-2; stability; unstructured meshes; absorbing boundary condition; convergence; divergence preservation;
D O I
10.1051/m2an:2005049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved for metallic cavities. Convergence is proved for P-k Discontinuous elements on tetrahedral meshes, as well as a discrete divergence preservation property. Promising numerical examples with low-order elements show the potential of the method.
引用
收藏
页码:1149 / 1176
页数:28
相关论文
共 27 条
[1]  
BOURDEL F, 1991, COMPUT METHOD APPL M, P405
[2]  
Canouet N, 2003, MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, P389
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
CIONI JP, 1997, 13 ANN REV PROGR APP, P359
[5]   Locally divergence-free discontinuous Galerkin methods for the Maxwell equations [J].
Cockburn, B ;
Li, FY ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) :588-610
[6]  
COCKBURN B, 2000, LECT NOTES COMPUT SC, V11
[7]  
Elmkies A, 1997, CR ACAD SCI I-MATH, V325, P1217, DOI 10.1016/S0764-4442(97)83557-4
[8]  
EYMARD R, 2000, HDB NUMER ANAL, V73
[9]   Explicit finite element methods for symmetric hyperbolic equations [J].
Falk, RS ;
Richter, GR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :935-952
[10]   Stable spectral methods on tetrahedral elements [J].
Hesthaven, JS ;
Teng, CH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2352-2380