Optimization of microwave-assisted alkali pretreatment followed by acid hydrolysis of sugarcane straw for production of acetone-butanol-ethanol

被引:11
|
作者
Karungi, Acheles [1 ]
Pogrebnoi, Alexander [1 ]
Kivevele, Thomas [1 ]
机构
[1] Nelson Mandela African Inst Sci & Technol, Dept Mat Energy Sci & Engn, POB 447, Arusha, Tanzania
关键词
Acetone-butanol-ethanol; reducing sugars; microwave-assisted alkali pretreatment; acid hydrolysis; response surface methodology; ENZYMATIC-HYDROLYSIS; WHEAT-STRAW; SIMULTANEOUS SACCHARIFICATION; HYDROTHERMAL PRETREATMENT; BY-PRODUCTS; FERMENTATION; BAGASSE; BIOETHANOL; CELLULOSE; BIOMASS;
D O I
10.1080/15567036.2020.1760404
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The production of acetone-butanol-ethanol (ABE) calls for effective pretreatment and hydrolysis techniques to maximize reducing sugar yields. In this study, optimized microwave-assisted alkali (MAA) pretreatment followed by acid hydrolysis was assessed for the production of reducing sugars from sugarcane straw (SCS). To evaluate effects of MAA pretreatment on SCS composition, response surface methodology (RSM) was employed upon subjecting SCS to 320, 640, and 960 W microwave power, using 1-3% (w/v) NaOH, and residence time of 5, 15, and 25 min. The pretreated SCS was made to undergo acid hydrolysis at 121 degrees C temperature and reaction time of 10-60 min to release reducing sugars. ABE was produced by anaerobic fermentation of reducing sugars using Clostridium beijerinkii. After pretreatment, maximum responses of 76.3% lignin removal, 21.1% hemicellulose, and 71.9% cellulose were achieved at 640 W microwave power, 2.8% NaOH concentration, and 19 min. The maximum reducing sugar concentration was 46.2 g/L while 18.7 g/L of ABE was produced. The results revealed that optimized MAA pretreatment followed by acid hydrolysis can enhance the yield of reducing sugars for ABE production with no need for costly enzymes.
引用
收藏
页码:7811 / 7827
页数:17
相关论文
共 50 条
  • [1] Optimization of Sugarcane Bagasse Hydrolysis by Microwave-Assisted Pretreatment for Bioethanol Production
    Ahi, Mohsen
    Azin, Mehrdad
    Shojaosadati, Seyed A.
    Vasheghani-Farahani, Ebrahim
    Nosrati, Mohsen
    CHEMICAL ENGINEERING & TECHNOLOGY, 2013, 36 (11) : 1997 - 2005
  • [2] Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment
    Soares Rodrigues, Tigressa Helena
    Ponte Rocha, Maria Valderez
    de Macedo, Gorete Ribeiro
    Goncalves, Luciana R. B.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2011, 164 (06) : 929 - 943
  • [3] Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment
    Li, Hailong
    Xiong, Lian
    Chen, Xuefang
    Wang, Can
    Qi, Gaoxiang
    Huang, Chao
    Luo, Mutan
    Chen, Xinde
    BIORESOURCE TECHNOLOGY, 2017, 228 : 257 - 263
  • [4] Optimization of Microwave-assisted Alkali Pretreatment and Enzymatic Hydrolysis of Banana Pseudostem
    Chittibabu, S.
    Saseetharan, M. K.
    Kalaivani, M. R.
    Rajesh, M. P.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (24) : 2691 - 2698
  • [5] Optimization of microwave pretreatment on wheat straw for ethanol production
    Xu, Jian
    Chen, Hongzhang
    Kadar, Zsofia
    Thomsen, Anne Belinda
    Schmidt, Jens Ejbye
    Peng, Huadong
    BIOMASS & BIOENERGY, 2011, 35 (09) : 3859 - 3864
  • [6] Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation
    Yang, Ming
    Zhang, Junhua
    Kuittinen, Suvi
    Vepsalainen, Jouko
    Soininen, Pasi
    Keinanen, Markku
    Pappinen, Ari
    BIORESOURCE TECHNOLOGY, 2015, 189 : 131 - 137
  • [7] MICROWAVE-ASSISTED ALKALI PRETREATMENT OF HAPLOPHRAGMA ADENOPHYLLUM LEAVES FOR BIOETHANOL PRODUCTION
    Rubab, Nasheen
    Ghazanfar, Misbah
    Adnan, Samreen
    Ahmad, Irfan
    Shakir, Hafiz Abdullah
    Khan, Muhammad
    Franco, Marcelo
    Irfan, Muhammad
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2023, 57 (3-4): : 345 - 358
  • [8] Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment
    Zhu, Zongyuan
    Rezende, Camila Alves
    Simister, Rachael
    McQueen-Mason, Simon J.
    Macquarrie, Duncan J.
    Polikarpov, Igor
    Gomez, Leonardo D.
    BIOMASS & BIOENERGY, 2016, 93 : 269 - 278
  • [9] Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment
    Portero-Barahona, Patricia
    Javier Carvajal-Barriga, Enrique
    Martin-Gil, Jesus
    Martin-Ramos, Pablo
    ENERGIES, 2019, 12 (09)
  • [10] Production of ethanol from microwave-assisted alkali pretreated wheat straw
    Zhu, SD
    Wu, YX
    Yu, ZN
    Zhang, X
    Wang, CW
    Yu, FQ
    Jin, SW
    PROCESS BIOCHEMISTRY, 2006, 41 (04) : 869 - 873