Shape reconstruction of nanoparticles from their associated plasmonic resonances

被引:15
作者
Ammari, Habib [1 ]
Putinar, Mihai [2 ,3 ]
Ruiz, Matias [4 ]
Yu, Sanghyeon [1 ]
Zhang, Hai [5 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
[5] HKUST, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 122卷
关键词
Plasmonic resonance; Neumann-Poincare operator; Algebraic domain; Quadrature domain; Nearly touching particles; PLANAR DOMAINS; INCLUSIONS; POINCAR; DESIGN;
D O I
10.1016/j.matpur.2017.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove by means of a couple of examples that plasmonic resonances can be used on one hand to classify shapes of nanoparticles with real algebraic boundaries and on the other hand to reconstruct the separation distance between two nanoparticles from measurements of their first collective plasmonic resonances. To this end, we explicitly compute the spectral decompositions of the Neumann-Poincare operators associated with a class of quadrature domains and two nearly touching disks. Numerical results are included in support of our main findings. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:23 / 48
页数:26
相关论文
共 35 条
[1]   Reconstruction of closely spaced small inclusions [J].
Ammari, H ;
Kang, HB ;
Kim, E ;
Lim, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2408-2428
[2]   Gradient estimates for solutions to the conductivity problem [J].
Ammari, H ;
Kang, HB ;
Lim, M .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :277-286
[3]  
Ammari H, 2013, LECT NOTES MATH, V2098, P1, DOI 10.1007/978-3-319-02585-8
[4]  
Ammari H., 2007, Polarization and Moment Tensors With Applications to Inverse Problems and Effective Medium Theory
[5]   Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case [J].
Ammari, Habib ;
Millien, Pierre ;
Ruiz, Matias ;
Zhang, Hai .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (02) :597-658
[6]   Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations [J].
Ammari, Habib ;
Ruiz, Matias ;
Yu, Sanghyeon ;
Zhang, Hai .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) :3615-3669
[7]   Surface Plasmon Resonance of Nanoparticles and Applications in Imaging [J].
Ammari, Habib ;
Deng, Youjun ;
Millien, Pierre .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (01) :109-153
[8]   OPTIMAL SHAPE DESIGN BY PARTIAL SPECTRAL DATA [J].
Ammari, Habib ;
Chow, Yat Tin ;
Liu, Keji ;
Zou, Jun .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :B855-B883
[9]  
Ammari H, 2015, ANN SCI ECOLE NORM S, V48, P453
[10]   Invariance properties of generalized polarization tensors and design of shape descriptors in three dimensions [J].
Ammari, Habib ;
Chung, Daewon ;
Kang, Hyeonbae ;
Wang, Han .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (01) :140-147