Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for Dynamic Object Removal

被引:11
|
作者
Theodorou, Charalambos [1 ,2 ]
Velisavljevic, Vladan [1 ]
Dyo, Vladimir [1 ]
机构
[1] Univ Bedforshire, Sch Comp Sci & Technol, Luton LU1 3JU, Beds, England
[2] Briteyellow Ltd, Bedford MK43 0BT, England
关键词
visual SLAM; object detection; simultaneous localization and mapping (SLAM); SEMANTIC SLAM;
D O I
10.3390/s22197553
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In dynamic indoor environments and for a Visual Simultaneous Localization and Mapping (vSLAM) system to operate, moving objects should be considered because they could affect the system's visual odometer stability and its position estimation accuracy. vSLAM can use feature points or a sequence of images, as it is the only source of input that can perform localization while simultaneously creating a map of the environment. A vSLAM system based on ORB-SLAM3 and on YOLOR was proposed in this paper. The newly proposed system in combination with an object detection model (YOLOX) applied on extracted feature points is capable of achieving 2-4% better accuracy compared to VPS-SLAM and DS-SLAM. Static feature points such as signs and benches were used to calculate the camera position, and dynamic moving objects were eliminated by using the tracking thread. A specific custom personal dataset that includes indoor and outdoor RGB-D pictures of train stations, including dynamic objects and high density of people, ground truth data, sequence data, and video recordings of the train stations and X, Y, Z data was used to validate and evaluate the proposed method. The results show that ORB-SLAM3 with YOLOR as object detection achieves 89.54% of accuracy in dynamic indoor environments compared to previous systems such as VPS-SLAM.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Visual SLAM in dynamic environments based on object detection
    Yongbao Ai
    Ting Rui
    Xiaoqiang Yang
    Jialin He
    Lei Fu
    Jianbin Li
    Ming Lu
    Defence Technology, 2021, 17 (05) : 1712 - 1721
  • [2] Visual SLAM in dynamic environments based on object detection
    Ai, Yong-bao
    Rui, Ting
    Yang, Xiao-qiang
    He, Jia-lin
    Fu, Lei
    Li, Jian-bin
    Lu, Ming
    DEFENCE TECHNOLOGY, 2021, 17 (05) : 1712 - 1721
  • [3] Visual SLAM in dynamic environments based on object detection附视频
    Yongbao Ai
    Ting Rui
    Xiaoqiang Yang
    Jialin He
    Lei Fu
    Jianbin Li
    Ming Lu
    Defence Technology, 2021, (05) : 1712 - 1721
  • [4] Visual SLAM Based on Dynamic Object Detection
    Chen, Bocheng
    Peng, Gang
    He, Dingxin
    Zhou, Cheng
    Hu, Bin
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5966 - 5971
  • [5] MOD-SLAM:Visual SLAM with Moving Object Detection in Dynamic Environments
    Hi, Jiarui
    Fang, Hao
    Yang, Qingkai
    Zha, Wenzhong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4302 - 4307
  • [6] Visual SLAM Based on Lightweight Dynamic Object Detection
    Jiang, Changjiang
    Lin, Tong
    Tan, Li
    Zhao, Changhao
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1158 - 1163
  • [7] Object Mobility classification based Visual SLAM in Dynamic Environments
    Zhang, Huayan
    Zhang, Tianwei
    Li, Yang
    Zhang, Lei
    Wang, Wanpeng
    2020 17TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2020, : 437 - 441
  • [8] Object Detection-based Visual SLAM for Dynamic Scenes
    Zhao, Xinhua
    Ye, Lei
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1153 - 1158
  • [9] AMORE: CNN-BASED MOVING OBJECT DETECTION AND REMOVAL TOWARDS SLAM IN DYNAMIC ENVIRONMENTS
    Pancham, A.
    Withey, D.
    Bright, G.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2020, 31 (04) : 46 - 58
  • [10] Robust Stereo Visual SLAM for Dynamic Environments With Moving Object
    Li, Gang
    Liao, Xiang
    Huang, Huilan
    Song, Shaojian
    Liu, Bin
    Zeng, Yawen
    IEEE ACCESS, 2021, 9 : 32310 - 32320