Composition operators on Sobolev spaces

被引:0
作者
Vodopyanov, SK [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS II | 2005年 / 382卷
关键词
Sobolev space; embedding theorem; quasiconformal mapping; CARNOT GROUPS; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain necessary and sufficient conditions for the composition operator defined by a mapping to be bounded (or an isomorphism) on Sobolev spaces of functions having generalized first derivatives.
引用
收藏
页码:401 / 415
页数:15
相关论文
共 33 条
[1]  
[Anonymous], MODERN PROBLEMS FUNC
[2]  
[Anonymous], 1985, Springer Series in Soviet Mathematics, DOI DOI 10.1007/978-3-662-09922-3
[3]  
[Anonymous], 1968, Publ. Math. Inst. Hautes Etudes Sci.
[4]  
[Anonymous], 2000, Proceedings on Analysis and Geometry
[5]  
[Anonymous], 1986, Multipliers in Spaces of Differentiable Functions
[6]  
Chernikov VM., 1996, SIBERIAN ADV MATH, V6, P64
[7]  
Federer H., 2014, Geometric Measure Theory
[8]  
Gehring F. W., 1971, ADV THEORY RIEMANN S, V66, P175
[9]  
MARTIO O, 1995, J REINE ANGEW MATH, V485, P19
[10]  
Mazya VG., 1961, THESIS LENINGRAD U L