Adjustable electromagnetically induced transparency based on terahertz metamaterial embedded with vanadium dioxide

被引:0
|
作者
Wu, Xiaoting [1 ]
Wang, Wei [1 ,2 ]
Liu, Chi [1 ]
Zhang, Ying [1 ,2 ]
Sun, Yide [1 ]
机构
[1] Yunnan Normal Univ, Sch Phys & Elect Informat, Kunming, Yunnan, Peoples R China
[2] Yunnan Key Lab Optoelect Informat Technol, Kunming, Yunnan, Peoples R China
来源
AOPC 2021: INFRARED DEVICE AND INFRARED TECHNOLOGY | 2021年 / 12061卷
基金
中国国家自然科学基金;
关键词
Electromagnetically induced transparency; metamaterial; vanadium dioxide; terahertz;
D O I
10.1117/12.2602352
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An adjustable electromagnetically induced transparency (EIT) metamaterial embedded with vanadium dioxide (VO2) is demonstrated at terahertz (THz) region. The unit cell of the metamaterial consists of a quartz substrate and two parallel wire metal resonators with different length on top layer. The two ends of the shorter wire metal resonator are filled with VO2. The short wire metal resonator (SWMR) and the long wire metal resonator (LWMR) are acted as bright mode, which can be directly coupled with the incident THz wave to produce the EIT. Due to the insulator-to-metal transition of VO2, the amplitude of EIT peak can be actively modulated and the modulation is implemented only in the EIT window with slight changes in transmission dips. When VO2 is transformed from the insulating phase to the metallic phase with the conductivity changed from 2x10(2) S/m to 2x10(5) S/m, the amplitude of the EIT peak can decrease from 0.91 to 0.03, which indicates that the EIT metamaterial achieves a large modulation depth. The physical mechanism of this phenomenon is explained by the magnetic field and current distributions. In addition, it is found that the slow-light effect gradually weakens and disappears with VO2 changing from the insulating phase to the metallic phase. This work provides a strategy to achieve an adjustable EIT effect in THz metamaterial structure embedded with VO2 and exhibits potential applications in THz modulators and slow-light devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] A frequency-adjustable electromagnetic induced transparency with terahertz metasurface based on vanadium dioxide
    Yang, Linyu
    Wang, Wei
    Sun, Yide
    Zhao, Chunyue
    Zhang, Ying
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES IX, 2022, 12324
  • [12] A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance
    Pan, Wu
    Yan, Yanjun
    Ma, Yong
    Shen, Dajun
    OPTICS COMMUNICATIONS, 2019, 431 : 115 - 119
  • [13] Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial
    Liu, Tingting
    Wang, Huaixing
    Liu, Yong
    Xiao, Longsheng
    Yi, Zao
    Zhou, Chaobiao
    Xiao, Shuyuan
    OPTICS COMMUNICATIONS, 2018, 426 : 629 - 634
  • [14] Dual-band tunable electromagnetically induced transparency in vanadium dioxide-based miniaturized terahertz metasurfaces
    Chen, Mingming
    Yang, Xue-Xia
    Shu, Fangzhou
    MATERIALS RESEARCH BULLETIN, 2024, 180
  • [15] Graphene-based tunable terahertz electromagnetically induced transparency using metamaterial structure
    Xu, Kai-Da
    Xia, Shengpei
    Cai, Yijun
    Li, Jianxing
    Cui, Jianlei
    Chen, Chengying
    Zhou, Jianmei
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2022, 64 (11) : 1917 - 1922
  • [16] Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region
    Jiang, Jiuxing
    Cui, Jifei
    Fang, Ruiqian
    Wu, Fengmin
    Yang, Yuqiang
    INTEGRATED FERROELECTRICS, 2020, 212 (01) : 1 - 8
  • [17] Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial
    丁国文
    刘少斌
    章海锋
    孔祥鲲
    李海明
    李炳祥
    刘思源
    李海
    Chinese Physics B, 2015, (11) : 538 - 542
  • [18] Terahertz Metamaterial Modulator Based on Vanadium Dioxide
    Ji-Ning Li
    Wei Li
    Sheng-Jiang Chang
    Journal of Electronic Science and Technology, 2014, (01) : 44 - 48
  • [19] Terahertz metal-graphene hybrid metamaterial for active manipulation of electromagnetically induced transparency
    Sun, Tong
    Li, Guo-Ming
    Li, Jian-Di
    Wang, Ying-Hua
    Li, Xiao-Man
    Cao, Hong-Zhong
    Ma, Ren-De
    Xu, Shi-Tong
    Zhang, Hui -Fang
    Fan, Fei
    Chang, Sheng-Jiang
    OPTICS COMMUNICATIONS, 2024, 565
  • [20] A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial
    Liu, Yongchen
    Qian, Yixian
    Hu, Fangrong
    Jiang, Mingzhu
    Zhang, Longhui
    RESULTS IN PHYSICS, 2020, 19