Cystic Fibrosis Gene Therapy in the UK and Elsewhere

被引:72
作者
Griesenbach, Uta
Pytel, Kamila M.
Alton, Eric W. F. W.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Gene Therapy, London SW3 6LR, England
[2] Univ London Imperial Coll Sci Technol & Med, UK Cyst Fibrosis Gene Therapy Consortium, London SW3 6LR, England
关键词
TRANSMEMBRANE CONDUCTANCE REGULATOR; POTENTIAL DIFFERENCE MEASUREMENTS; DEPENDENT ADENOVIRAL VECTORS; LONG-TERM SAFETY; NASAL EPITHELIUM; RECOMBINANT ADENOVIRUS; AEROSOL DELIVERY; SENDAI-VIRUS; PSEUDOTYPED LENTIVIRUS; REDUCED INFLAMMATION;
D O I
10.1089/hum.2015.027
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 112 条
[21]   Potential difference measurements in the lower airway of children with and without cystic fibrosis [J].
Davies, JC ;
Davies, M ;
McShane, D ;
Smith, S ;
Chadwick, S ;
Jaffe, A ;
Farley, R ;
Collins, L ;
Bush, A ;
Scallon, M ;
Pepper, J ;
Geddes, DM ;
Alton, EWFW .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2005, 171 (09) :1015-1019
[22]   Aerosol Delivery of DNA/Liposomes to the Lung for Cystic Fibrosis Gene Therapy [J].
Davies, Lee A. ;
Nunez-Alonso, Graciela A. ;
McLachlan, Gerry ;
Hyde, Stephen C. ;
Gill, Deborah R. .
HUMAN GENE THERAPY CLINICAL DEVELOPMENT, 2014, 25 (02) :97-107
[23]   Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation [J].
De Boeck, Kris ;
Munck, Anne ;
Walker, Seth ;
Faro, Albert ;
Hiatt, Peter ;
Gilmartin, Geoffrey ;
Higgins, Mark .
JOURNAL OF CYSTIC FIBROSIS, 2014, 13 (06) :674-680
[24]   Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages [J].
Deriy, Ludmila V. ;
Gomez, Erwin A. ;
Zhang, Guangping ;
Beacham, Daniel W. ;
Hopson, Jessika A. ;
Gallan, Alexander J. ;
Shevchenko, Pavel D. ;
Bindokas, Vytautas P. ;
Nelson, Deborah J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (51) :35926-35938
[25]   CFTR regulates phagosome acidification in macrophages and alters bactericidal activity [J].
Di, Anke ;
Brown, Mary E. ;
Deriy, Ludmila V. ;
Li, Chunying ;
Szeto, Frances L. ;
Chen, Yimei ;
Huang, Ping ;
Tong, Jiankun ;
Naren, Anjaparavanda P. ;
Bindokas, Vytautas ;
Palfrey, H. Clive ;
Nelson, Deborah J. .
NATURE CELL BIOLOGY, 2006, 8 (09) :933-U52
[26]   SUBMUCOSAL GLANDS ARE THE PREDOMINANT SITE OF CFTR EXPRESSION IN THE HUMAN BRONCHUS [J].
ENGELHARDT, JF ;
YANKASKAS, JR ;
ERNST, SA ;
YANG, YP ;
MARINO, CR ;
BOUCHER, RC ;
COHN, JA ;
WILSON, JM .
NATURE GENETICS, 1992, 2 (03) :240-248
[27]   Gene transfer of CFTR to airway epithelia:: low levels of expression are sufficient to correct Cl- transport and overexpression can generate basolateral CFTR [J].
Farmen, SL ;
Karp, PH ;
Ng, P ;
Palmer, DJ ;
Koehler, DR ;
Hu, J ;
Beaudet, AL ;
Zabner, J ;
Welsh, MJ .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2005, 289 (06) :L1123-L1130
[28]   CpG-depleted adeno-associated virus vectors evade immune detection [J].
Faust, Susan M. ;
Bell, Peter ;
Cutler, Benjamin J. ;
Ashley, Scott N. ;
Zhu, Yanqing ;
Rabinowitz, Joseph E. ;
Wilson, James M. .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (07) :2994-3001
[29]   Sendai virus-mediated CFTR gene transfer to the airway epithelium [J].
Ferrari, S. ;
Griesenbach, U. ;
Iida, A. ;
Farley, R. ;
Wright, A. M. ;
Zhu, J. ;
Munkonge, F. M. ;
Smith, S. N. ;
You, J. ;
Ban, H. ;
Inoue, M. ;
Chan, M. ;
Singh, C. ;
Verdon, B. ;
Argent, B. E. ;
Wainwright, B. ;
Jeffery, P. K. ;
Geddes, D. M. ;
Porteous, D. J. ;
Hyde, S. C. ;
Gray, M. A. ;
Hasegawa, M. ;
Alton, E. W. F. W. .
GENE THERAPY, 2007, 14 (19) :1371-1379
[30]   Dual Reporter Comparative Indexing of rAAV Pseudotyped Vectors in Chimpanzee Airway [J].
Flotte, Terence R. ;
Fischer, Anne C. ;
Goetzmann, Jason ;
Mueller, Christian ;
Cebotaru, Liudmila ;
Yan, Ziying ;
Wang, Lilli ;
Wilson, James M. ;
Guggino, William B. ;
Engelhardt, John F. .
MOLECULAR THERAPY, 2010, 18 (03) :594-600