GENERALIZED DAVIS-JANUSZKIEWICZ SPACES, MULTICOMPLEXES AND MONOMIAL RINGS

被引:5
作者
Trevisan, Alvise J. [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Exacte Wetenschappen, NL-1081 HV Amsterdam, Netherlands
关键词
Davis-Januszkiewicz space; monomial ring; Stanley-Rainer ring; simplicial complex; polarization; homotopy fiber;
D O I
10.4310/HHA.2011.v13.n1.a8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every monomial ring can be realized topologically by a certain topological space. This space is called a generalized Davis-Januszkiewicz space and can be thought of as a colimit over a multicomplex, a combinatorial object generalizing a simplicial complex. Furthermore, we show that such a space is obtained as the homotopy fiber of a certain map with total space the classical Davis-Januszkiewicz space.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 16 条
  • [1] The Steenrod problem of realizing polynomial cohomology rings
    Andersen, Kasper K. S.
    Grodal, Jesper
    [J]. JOURNAL OF TOPOLOGY, 2008, 1 (04) : 747 - 760
  • [2] The polyhedral product functor: A method of decomposition for moment-angle complexes, arrangements and related spaces
    Bahri, A.
    Bendersky, M.
    Cohen, F. R.
    Gitler, S.
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1634 - 1668
  • [3] BUCHSTABER V, 2002, U LECT SERIES, V24
  • [4] Buchstaber VM., 1999, T MAT I STEKLOVA, V225, P96
  • [5] CIMPOEAS M, 2006, AN STIINT U OVIDIUS, V14, P9
  • [6] CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS
    DAVIS, MW
    JANUSZKIEWICZ, T
    [J]. DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) : 417 - 451
  • [7] FROBERG R, 1982, MATH SCAND, V51, P22
  • [8] KANE RM, 1998, N HOLLAND MATH LIB, V40
  • [9] PULL-BACKS IN HOMOTOPY THEORY
    MATHER, M
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (02): : 225 - 263
  • [10] McCleary J, 2001, Cambridge Studies in Advanced Mathematics, V58