Approximation of integration maps of vector measures and limit representations of Banach function spaces

被引:1
|
作者
Jimenez Fernandez, Eduardo [1 ]
Sanchez Perez, Enrique A. [2 ]
Werner, Dirk [3 ]
机构
[1] Univ Jaume 1, Dept Econ, Campus Riu Sec S-N, Castellon de La Plana 12071, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, E-46022 Valencia, Spain
[3] Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 6, D-14195 Berlin, Germany
关键词
vector measures; integration map; Daugavet property; REARRANGEMENT-INVARIANT SPACES; DAUGAVET PROPERTY; NUMERICAL INDEX; OPERATORS; CENTERS;
D O I
10.4064/ap170407-21-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study whether or not the integration maps of vector measures can be computed as pointwise limits of their finite rank Radon Nikodym derivatives. The positive cases are obtained by using the circle of ideas related to the approximation property for Banach spaces. The negative ones are given by means of an appropriate use of the Daugavet property. As an application, we analyse when the norm in a space L-1(m) of integrable functions can be computed as a limit of the norms of the spaces of integrable functions with respect to the Radon-Nikodym derivatives of m.
引用
收藏
页码:63 / 81
页数:19
相关论文
共 15 条
  • [1] Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation
    Ricardo del Campo
    Antonio Fernández
    Fernando Mayoral
    Francisco Naranjo
    Collectanea Mathematica, 2021, 72 : 481 - 499
  • [2] Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation
    del Campo, Ricardo
    Fernandez, Antonio
    Mayoral, Fernando
    Naranjo, Francisco
    COLLECTANEA MATHEMATICA, 2021, 72 (03) : 481 - 499
  • [3] APPROXIMATION BY POLYNOMIALS IN REARRANGEMENT INVARIANT QUASI BANACH FUNCTION SPACES
    Akgun, Ramazan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02): : 113 - 131
  • [4] Vector measure duality and tensor product representations of Lp-spaces of vector measures
    Pérez, EAS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (11) : 3319 - 3326
  • [5] Absolutely p-summable sequences in Banach spaces and range of vector measures
    Sofi, M. A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (03) : 993 - 1010
  • [6] Approximation by Trigonometric Polynomials in Rearrangement Invariant Quasi Banach Function Spaces
    Jafarov, Sadulla Z.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (01) : 37 - 50
  • [7] State dependent vector measures as feedback controls for impulsive systems in Banach spaces
    Ahmed, NU
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (02): : 251 - 261
  • [8] Approximation by Trigonometric Polynomials in Rearrangement Invariant Quasi Banach Function Spaces
    Sadulla Z. Jafarov
    Mediterranean Journal of Mathematics, 2015, 12 : 37 - 50
  • [9] INTERPOLATION WITH A PARAMETER FUNCTION AND INTEGRABLE FUNCTION SPACES WITH RESPECT TO VECTOR MEASURES
    del Campo, Ricardo
    Fernandez, Antonio
    Manzano, Antonio
    Mayoral, Fernando
    Naranjo, Francisco
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 707 - 720
  • [10] ON BANACH SPACES OF VECTOR-VALUED RANDOM VARIABLES AND THEIR DUALS MOTIVATED BY RISK MEASURES
    Kalmes, Thomas
    Pichler, Alois
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 773 - 807