Temperature effect and thermal impact in lithium-ion batteries: A review

被引:990
作者
Ma, Shuai [1 ,2 ]
Jiang, Modi [1 ,2 ]
Tao, Peng [1 ,2 ]
Song, Chengyi [1 ,2 ]
Wu, Jianbo [1 ,2 ]
Wang, Jun [3 ]
Deng, Tao [1 ,2 ]
Shang, Wen [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] A123 Syst Res Ctr, 200 West St, Waltham, MA 02451 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-ion battery; Temperature effect; Internal temperature; Battery management; Thermal management; HEAT-GENERATION; INTERNAL TEMPERATURE; CATHODE MATERIAL; CAPACITY FADE; HIGH-POWER; CYCLING DEGRADATION; MANAGEMENT-SYSTEM; RESEARCH PROGRESS; HYDRIDE BATTERY; CELL OPERATION;
D O I
10.1016/j.pnsc.2018.11.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-ion batteries, with high energy density (up to 705 Wh/L) and power density (up to 10,000 W/L), exhibit high capacity and great working performance. As rechargeable batteries, lithium-ion batteries serve as power sources in various application systems. Temperature, as a critical factor, significantly impacts on the performance of lithium-ion batteries and also limits the application of lithium-ion batteries. Moreover, different temperature conditions result in different adverse effects. Accurate measurement of temperature inside lithium-ion batteries and understanding the temperature effects are important for the proper battery management. In this review, we discuss the effects of temperature to lithium-ion batteries at both low and high temperature ranges. The current approaches in monitoring the internal temperature of lithium-ion batteries via both contact and contactless processes are also discussed in the review.
引用
收藏
页码:653 / 666
页数:14
相关论文
共 129 条
[11]  
Cecchini R., 1992, IEEE Antennas and Propagation Magazine, V34, P30, DOI 10.1109/74.134307
[12]   Comparison of different cooling methods for lithium ion battery cells [J].
Chen, Dafen ;
Jiang, Jiuchun ;
Kim, Gi-Heon ;
Yang, Chuanbo ;
Pesaran, Ahmad .
APPLIED THERMAL ENGINEERING, 2016, 94 :846-854
[13]   Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles [J].
Choi, Yong Seok ;
Kang, Dal Mo .
JOURNAL OF POWER SOURCES, 2014, 270 :273-280
[14]   THE DISCOVERY OF THE ELECTRIC-CURRENT [J].
COTTI, P .
PHYSICA B, 1995, 204 (1-4) :367-369
[15]   Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements [J].
Drake, S. J. ;
Martin, M. ;
Wetz, D. A. ;
Ostanek, J. K. ;
Miller, S. P. ;
Heinzel, J. M. ;
Jain, A. .
JOURNAL OF POWER SOURCES, 2015, 285 :266-273
[16]   An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method [J].
Du, Shuanglong ;
Lai, Yanqing ;
Ai, Liang ;
Ai, Lihua ;
Cheng, Yun ;
Tang, Yiwei ;
Jia, Ming .
APPLIED THERMAL ENGINEERING, 2017, 121 :501-510
[17]   Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithiumion batteries [J].
Ecker, Madeleine ;
Nieto, Nerea ;
Kaebitz, Stefan ;
Schmalstieg, Johannes ;
Blanke, Holger ;
Warnecke, Alexander ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 248 :839-851
[18]   Developing heat source term including heat generation at rest condition for Lithium-ion battery pack by up scaling information from cell scale [J].
Esmaeili, Javad ;
Jannesari, Hamid .
ENERGY CONVERSION AND MANAGEMENT, 2017, 139 :194-205
[19]  
Feng Xi-kang, 2002, Chinese Journal of Power Sources, V26, P63
[20]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301