Prediction of building electricity usage using Gaussian Process Regression

被引:89
|
作者
Zeng, Aaron [1 ]
Ho, Hodde [2 ]
Yu, Yao [3 ]
机构
[1] United Technol Corp, Shanghai, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian, Liaoning, Peoples R China
[3] North Dakota State Univ, Dept Construct Management & Engn, Fargo, ND 58105 USA
关键词
Energy use prediction; Machine learning; Electricity consumption; Gaussian process regression; Online building energy; FAULT-DETECTION ANALYSIS; MACHINE LEARNING-MODELS; ENERGY-CONSUMPTION; CLASSIFICATION;
D O I
10.1016/j.jobe.2019.101054
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The prediction of building energy use is the basis for smart building operation, which optimizes building performance through control and low-energy strategy. For reducing computation complexity and improving calculation accuracy, a comparative study of online electricity data predictions for different types of buildings was conducted. This study is also intended to assess the capability and accuracy of the supervised machine learning methods, with which the kernel algorithms of predictions were developed. Specifically, in this study, large-scale real data collected from the building energy management system were used in the online energy consumption forecasting, which is specially designed for optimized control, real-time fault detection, diagnosis and abnormality alarms. Firstly, the characteristics of building energy profiles and data reliability were addressed. Mathematical algorithms were introduced and their previous applications in building energy usage prediction were summarized, including the evaluation criteria that are effective for energy use predictions in buildings. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison between the monitored actual data and the predicted results. It is found that Gaussian Process Regression (GPR) can give acceptable predictions on the energy consumption of office buildings with an equilibrium of data prediction accuracy with the average deviations of below 15% and low computation time. Additionally, the statistical evaluation criteria proposed by ASHRAE can also be satisfied. For hotels and shopping malls where complex functions were applied in these buildings, their accuracy are not better or even the same as those of simplified models, due to the significant effects of the factors involving occupant's activities and schedules as well as data reliability on building energy usage. Our result revealed that GPR is a reliable method and can still generate highly accurate predictions when a large data set with a small time interval and complex energy use patterns obtained from real building measurements rather than simulated data are involved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Thermal matching using Gaussian process regression
    Pearce, Robert
    Ireland, Peter
    Romero, Eduardo
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2020, 234 (06) : 1172 - 1180
  • [42] A New Multimodal Map Building Method Using Multiple Object Tracking and Gaussian Process Regression
    Jang, Eunseong
    Lee, Sang Jun
    Jo, Hyunggi
    REMOTE SENSING, 2024, 16 (14)
  • [43] Augmented Logarithmic Gaussian Process Regression Methodology for Chlorophyll Prediction
    Dey, Subhadip
    Pratiher, Sawon
    Mukherjee, C. K.
    Banerjee, Saon
    Chakraborty, Arnab
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS V, 2018, 10679
  • [44] Statistical method for prediction of gait kinematics with Gaussian process regression
    Yun, Youngmok
    Kim, Hyun-Chul
    Shin, Sung Yul
    Lee, Junwon
    Deshpande, Ashish D.
    Kim, Changhwan
    JOURNAL OF BIOMECHANICS, 2014, 47 (01) : 186 - 192
  • [45] Gaussian Process Regression for numerical wind speed prediction enhancement
    Cai, Haoshu
    Jia, Xiaodong
    Feng, Jianshe
    Li, Wenzhe
    Hsu, Yuan-Ming
    Lee, Jay
    RENEWABLE ENERGY, 2020, 146 : 2112 - 2123
  • [46] Prediction of Critical Heat Flux Based on Gaussian Process Regression
    Jiang B.
    Huang X.
    Hedongli Gongcheng/Nuclear Power Engineering, 2019, 40 (05): : 46 - 50
  • [47] Gaussian Process Regression Ensemble Model for Network Traffic Prediction
    Bayati, Abdolkhalegh
    Nguyen, Kim-Khoa
    Cheriet, Mohamed
    IEEE ACCESS, 2020, 8 : 176540 - 176554
  • [48] Stream water temperature prediction based on Gaussian process regression
    Grbic, Ratko
    Kurtagic, Dino
    Sliskovic, Drazen
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (18) : 7407 - 7414
  • [49] Application of Gaussian Process Regression to Prediction of Thermal Comfort Index
    Sun Bin
    Yan Wenlai
    PROCEEDINGS OF 2013 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2013, : 958 - 961
  • [50] Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression
    Wang, Mengsi
    Chen, Zhenlei
    Zhan, Haoran
    Zhang, Jiyu
    Wu, Xinglong
    Jiang, Dan
    Guo, Qing
    SENSORS, 2023, 23 (23)