Aptamer-Modified Graphene-Based Catalytic Micromotors: Off-On Fluorescent Detection of Ricin

被引:125
作者
de Avila, Berta Esteban-Fernandez [1 ]
Lopez-Ramirez, Miguel Angel [1 ]
Baez, Daniela F. [1 ]
Jodra, Adrian [1 ]
Singh, Virendra V. [1 ]
Kaufmann, Kevin [1 ]
Wang, Joseph [1 ]
机构
[1] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
关键词
ricin; aptamer; micromotors; real time-detection; graphene; ASSAY; NANO/MICROMOTORS; BIOSENSORS; TOXIN; OXIDE;
D O I
10.1021/acssensors.5b00300
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An aptamer-based catalytic micromotor sensing strategy for "Off-On" real-time fluorescent detection of the ricin B toxin is described. This approach relies on self-propelled reduced graphene-oxide (rGO)/platinum (Pt) micromotors, modified with a specific ricin B aptamer tagged with a fluorescein-amidine (FAM) dye, whose fluorescence is quenched due to pi-pi interactions with the rGO surface. The continuous movement of the motor in the sample accelerates the specific binding of the ricin B toxin to the aptamer-dye conjugate and leads to real-time fluorescent "On" detection. Coupling the "Off-On" fluorescent switching properties of the aptamer modified-rGO/Pt micromotors with their inherent mixing capabilities thus leads to high speed, simplicity, and sensitivity advantages, thus addressing the limitations of current ricin detection strategies. The new micromotor strategy represents an attractive route for detecting biological threats in a variety of biodefense applications.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 32 条
[1]   Detection of functional ricin by immunoaffinity and liquid chromatography-tandem mass spectrometry [J].
Becher, F. ;
Duriez, E. ;
Volland, H. ;
Tabet, J. C. ;
Ezan, E. .
ANALYTICAL CHEMISTRY, 2007, 79 (02) :659-665
[2]   Ricin Activity Assay by Direct Analysis in Real Time Mass Spectrometry Release Detection of Adenine Release [J].
Bevilacqua, Vicky L. H. ;
Nilles, J. Michael ;
Rice, Jeffrey S. ;
Connell, Theresa R. ;
Schenning, Amanda M. ;
Reilly, Lisa M. ;
Durst, H. Dupont .
ANALYTICAL CHEMISTRY, 2010, 82 (03) :798-800
[3]   Ricin detection: Tracking active toxin [J].
Bozza, William P. ;
Tolleson, William H. ;
Rosado, Leslie A. Rivera ;
Zhang, Baolin .
BIOTECHNOLOGY ADVANCES, 2015, 33 (01) :117-123
[4]   Milk Matrix Effects on Antibody Binding Analyzed by Enzyme-Linked Immunosorbent Assay and Biolayer Interferometry [J].
Brandon, David L. ;
Adams, Lisa M. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2015, 63 (13) :3593-3598
[5]   Bacterial Isolation by Lectin-Modified Microengines [J].
Campuzano, Susana ;
Orozco, Jahir ;
Kagan, Daniel ;
Guix, Maria ;
Gao, Wei ;
Sattayasamitsathit, Sirilak ;
Claussen, Jonathan C. ;
Merkoci, Arben ;
Wang, Joseph .
NANO LETTERS, 2012, 12 (01) :396-401
[6]  
Cenciarelli O., 2014, J. Microb. Biochem. Technol, V6, P375, DOI DOI 10.4172/1948-5948.1000172
[7]   Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels [J].
Cunningham, Josephine C. ;
Scida, Karen ;
Kogan, Molly R. ;
Wang, Bo ;
Ellington, Andrew D. ;
Crooks, Richard M. .
LAB ON A CHIP, 2015, 15 (18) :3707-3715
[8]   Single Cell Real-Time miRNAs Sensing Based on Nanomotors [J].
de Avila, Berta Esteban-Fernandez ;
Martin, Aida ;
Soto, Fernando ;
Lopez-Ramirez, Miguel Angel ;
Campuzano, Susana ;
Vasquez-Machado, Gersson Manuel ;
Gao, Weiwei ;
Zhang, Liangfang ;
Wang, Joseph .
ACS NANO, 2015, 9 (07) :6756-6764
[9]   Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins [J].
Fetter, Lisa ;
Richards, Jonathan ;
Daniel, Jessica ;
Roon, Laura ;
Rowland, Teisha J. ;
Bonham, Andrew J. .
CHEMICAL COMMUNICATIONS, 2015, 51 (82) :15137-15140
[10]   Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies [J].
Gaylord, Shonda T. ;
Dinh, Trinh L. ;
Goldman, Ellen R. ;
Anderson, George P. ;
Ngan, Kevin C. ;
Walt, David R. .
ANALYTICAL CHEMISTRY, 2015, 87 (13) :6570-6577