RIGOROUS NUMERICS FOR NONLINEAR OPERATORS WITH TRIDIAGONAL DOMINANT LINEAR PART

被引:5
作者
Breden, Maxime [1 ,2 ]
Desvillettes, Laurent [1 ,2 ]
Lessard, Jean-Philippe [3 ]
机构
[1] ENS Cachan, CMLA, F-94230 Cachan, France
[2] CNRS, F-94230 Cachan, France
[3] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
关键词
Tridiagonal operator; contraction mapping; rigorous numerics; Fourier series; PERIODIC-ORBITS; EQUATIONS;
D O I
10.3934/dcds.2015.35.4765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method designed for computing solutions of infinite dimensional nonlinear operators f(x) = 0 with a tridiagonal dominant linear part. We recast the operator equation into an equivalent Newton like equation x = T(x) = x - Af(x), where A is an approximate inverse of the derivative D f ((x) over bar) at an approximate solution (x) over bar. We present rigorous computer-assisted calculations showing that T is a contraction near (x) over bar, thus yielding the existence of a solution. Since D f ((x) over bar) does not have an asymptotically diagonal dominant structure, the computation of A is not straightforward. This paper provides ideas for computing A, and proposes a new rigorous method for proving existence of solutions of nonlinear operators with tridiagonal dominant linear part.
引用
收藏
页码:4765 / 4789
页数:25
相关论文
共 18 条
[1]  
[Anonymous], 1989, CAMBRIDGE TEXTS APPL
[2]  
[Anonymous], MATH COMP IN PRESS
[3]  
Baker AW, 2005, DISCRETE CONT DYN S, V13, P901
[4]  
Boyd J., 2001, Chebyshev and fourier spectral methods, V2nd
[5]  
Breden M., MATLAB CODES PERFORM
[6]   Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System [J].
Breden, Maxime ;
Lessard, Jean-Philippe ;
Vanicat, Matthieu .
ACTA APPLICANDAE MATHEMATICAE, 2013, 128 (01) :113-152
[7]   Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits [J].
Castelli, Roberto ;
Lessard, Jean-Philippe .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (01) :204-245
[8]   A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems [J].
Day, S ;
Junge, O ;
Mischaikow, K .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2004, 3 (02) :117-160
[9]   Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs [J].
Gameiro, Marcia ;
Lessard, Jean-Philippe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) :2237-2268
[10]   EFFICIENT RIGOROUS NUMERICS FOR HIGHER-DIMENSIONAL PDEs VIA ONE-DIMENSIONAL ESTIMATES [J].
Gameiro, Marcio ;
Lessard, Jean-Philippe .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) :2063-2087