Comparative Investigation of MPPT Controller For Grid Connected Photovoltaic System

被引:2
作者
Sarhan, Amr A. [1 ]
Kamel, Mohamed A. [2 ]
Hafez, Ahmed T. [1 ]
Givigi, Sidney [3 ]
机构
[1] Mil Tech Coll, Dept Elect Engn, Cairo 11766, Egypt
[2] Mil Tech Coll, Dept Mech Engn, Cairo 11766, Egypt
[3] Queens Univ, Sch Comp, Kingston, ON, Canada
来源
2020 14TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON2020) | 2020年
关键词
ANFIS; PSO; SMC; MPPT; POWER-POINT-TRACKING; SLIDING MODE CONTROL; CONTROL DESIGN; FUZZY-LOGIC; ALGORITHM;
D O I
10.1109/SysCon47679.2020.9460985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, global warming is attracting the attention of the whole world. One of the main reasons is the increase of CO2 causing high pollution levels due to the burning of fossil fuels. The promising performance of green energy encourages the use of solar energy instead of ordinary sources. Photovoltaic (PV) energy is a free energy that requires to reach its Maximum Power Point Tracking (MPPT) to guarantee sufficient power for a long Energy Payback Time (EPBT). In this paper, we introduce several control approaches- Adaptive Neuro Fuzzy Inference Systems (ANFIS), Particle Swarm Optimization (PSO) and Sliding Mode Control (SMC)- aiming at the maximum PV system output power with minimum EPBT. To prove the success of these, the results are compared with the results of PV system using Hill Climbing (HC) method, Incremental Conductance (INC) method and Perturb Observation (P & O) technique.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Enhancing the maximum power point tracking techniques for photovoltaic systems [J].
Abu Eldahab, Yasser E. ;
Saad, Naggar H. ;
Zekry, Abdalhalim .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 40 :505-514
[2]  
Aldobhani AbdulazizMS., 2008, MAXIMUM POWER POINT
[3]  
[Anonymous], 1994, MANAGING GLOBAL COMM
[4]  
Anoop K., 2018, P 2018 INT C POWER I, P1
[5]  
Bahari MI, 2016, 2016 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), P1041, DOI 10.1109/SPEEDAM.2016.7525990
[6]   Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system [J].
Dounis, Anastasios I. ;
Kofinas, Panagiotis ;
Alafodimos, Constantine ;
Tseles, Dimitrios .
RENEWABLE ENERGY, 2013, 60 :202-214
[7]  
Eberhart R., 1995, 6 INT S MICR HUM SCI, P39, DOI DOI 10.1109/MHS.1995.494215
[8]   Adaptive fuzzy controller based MPPT for photovoltaic systems [J].
Guenounou, Ouahib ;
Dahhou, Boutaib ;
Chabour, Ferhat .
ENERGY CONVERSION AND MANAGEMENT, 2014, 78 :843-850
[9]  
Henderson R. M., 2015, RISK, V1
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685