The stochastic diffusion process in reversed-field pinch

被引:42
作者
DAngelo, F
Paccagnella, R
机构
[1] Gruppo Padova fer Ric. Sulla Fusions, Universita di Padova, Istituto Gas Ionizzati del CNR
关键词
D O I
10.1063/1.871919
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stochastic diffusion process has been carefully analysed for the Reverse Field Pinch (RFP) equilibrium configuration. Three different approaches to the problem have been used, i.e, the direct calculation of the stochastic diffusion coefficient (D-st) from the radial evolution of an ensemble of field lines, an indirect determination using a Gaussian-fit to the field line probability distribution function and finally the relationship of D-st with the maximum Lyapunov exponent of the system. Different perturbation spectra have been also considered and compared and the quasi-linear approximation has been tested. (C) 1996 American Institute of Physics.
引用
收藏
页码:2353 / 2364
页数:12
相关论文
共 21 条
[1]   SELF-SIMILARITY OF STOCHASTIC MAGNETIC-FIELD LINES NEAR THE X-POINT [J].
ABDULLAEV, SS ;
ZASLAVSKY, GM .
PHYSICS OF PLASMAS, 1995, 2 (12) :4533-4541
[2]   POINCARE MAP AND ANOMALOUS TRANSPORT IN A MAGNETICALLY CONFINED PLASMA [J].
BAZZANI, A ;
MALAVASI, M ;
SIBONI, S ;
PELLACANI, C ;
RAMBALDI, S ;
TURCHETTI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 103 (06) :659-668
[3]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[4]   NONCANONICAL HAMILTONIAN-MECHANICS AND ITS APPLICATION TO MAGNETIC-FIELD LINE FLOW [J].
CARY, JR ;
LITTLEJOHN, RG .
ANNALS OF PHYSICS, 1983, 151 (01) :1-34
[5]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[6]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[7]   ANOMALOUS TRANSPORT OF STREAMLINES DUE TO THEIR CHAOS AND THEIR SPATIAL TOPOLOGY [J].
CHERNIKOV, AA ;
PETROVICHEV, BA ;
ROGALSKY, AV ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (03) :127-133
[8]  
GUREVICH AV, 1991, ZH EKSP TEOR FIZ+, V100, P1767
[9]   WHEN DOES THE QUASI-LINEAR THEORY WORK [J].
KORNIENKO, AG ;
NATENZON, MY ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1991, 158 (08) :398-406
[10]   PLASMA TRANSPORT IN STOCHASTIC MAGNETIC-FIELDS .3. KINETICS OF TEST PARTICLE DIFFUSION [J].
KROMMES, JA ;
OBERMAN, C ;
KLEVA, RG .
JOURNAL OF PLASMA PHYSICS, 1983, 30 (AUG) :11-56