(2+1)-dimensional lattice QCD

被引:20
作者
Orland, P [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] CUNY, Grad Sch & Univ Ctr, Phys Program, New York, NY 10016 USA
[3] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 05期
关键词
D O I
10.1103/PhysRevD.71.054503
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a (2 + 1)-dimensional SU(N) lattice gauge theory in an axial gauge with the link field U-1 set equal to one. The term in the Hamiltonian containing the square of the electric field in the 1-direction is nonlocal. Despite this nonlocality, we show that weak-coupling perturbation theory in this term gives a finite vacuum-energy density to second order, and suggest that this property holds to all orders. Heavy quarks are confined, the spectrum is gapped, and the spacelike Wilson loop has area decay.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 37 条
[1]   ON THE EXACT S-MATRIX OF THE PRINCIPAL CHIRAL MODEL [J].
ABDALLA, E ;
ABDALLA, MCB ;
LIMASANTOS, A .
PHYSICS LETTERS B, 1984, 140 (1-2) :71-75
[2]   PHASE-TRANSITION IN NONLINEAR SIGMA MODEL IN A (2+ EPSILON-DIMENSIONAL CONTINUUM [J].
BARDEEN, WA ;
LEE, BW ;
SHROCK, RE .
PHYSICAL REVIEW D, 1976, 14 (04) :985-1005
[3]   STRING, CORNER, AND PLAQUETTE FORMULATION OF FINITE LATTICE GAUGE-THEORY [J].
BATROUNI, GG ;
HALPERN, MB .
PHYSICAL REVIEW D, 1984, 30 (08) :1782-1790
[4]   GAUGE-INVARIANT MEAN-PLAQUETTE METHOD FOR LATTICE GAUGE-THEORIES [J].
BATROUNI, GG .
NUCLEAR PHYSICS B, 1982, 208 (01) :12-26
[5]   RENORMALIZATION OF NONLINEAR SIGMA MODEL IN 2 + EPSILON DIMENSIONS [J].
BREZIN, E ;
ZINNJUSTIN, J ;
GUILLOU, JCL .
PHYSICAL REVIEW D, 1976, 14 (10) :2615-2621
[6]   SPONTANEOUS BREAKDOWN OF CONTINUOUS SYMMETRIES NEAR 2 DIMENSIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
PHYSICAL REVIEW B, 1976, 14 (07) :3110-3120
[7]   A GAUGE-FIXED HAMILTONIAN FOR LATTICE QCD [J].
BRONZAN, JB ;
VAUGHAN, TE .
PHYSICAL REVIEW D, 1993, 47 (08) :3543-3545
[8]   EXPLICIT HAMILTONIAN FOR SU(2) LATTICE GAUGE-THEORY [J].
BRONZAN, JB .
PHYSICAL REVIEW D, 1985, 31 (08) :2020-2028
[9]  
Creutz M., 1983, Quarks, Gluons and Lattices
[10]   INTEGRABILITY OF THE PRINCIPAL CHIRAL FIELD MODEL IN 1 + 1 DIMENSION [J].
FADDEEV, LD ;
RESHETIKHIN, NY .
ANNALS OF PHYSICS, 1986, 167 (02) :227-256