FIBONACCI-MANN ITERATION FOR MONOTONE ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

被引:16
作者
Alfuraidan, M. R. [1 ]
Khamsi, M. A. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
asymptotically nonexpansive mapping; Fibonacci sequence; fixed point; Mann iteration process; monotone Lipschitzian mapping; Opial condition; uniformly convex Banach space; FIXED-POINT THEOREM;
D O I
10.1017/S0004972717000120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the results of Schu ['Iterative construction of fixed points of asymptotically nonexpansive mappings', J. Math. Anal. Appl. 158 (1991), 407-413] to monotone asymptotically nonexpansive mappings by means of the Fibonacci-Mann iteration process x(n+1) = t(n)T(f(n))(x(n)) + (1 - t(n))x(n), n is an element of N, where T is a monotone asymptotically nonexpansive self-mapping defined on a closed bounded and nonempty convex subset of a uniformly convex Banach space and {f (n)} g is the Fibonacci integer sequence. We obtain a weak convergence result in L-p([0; 1]), with 1 < p < +infinity, using a property similar to the weak Opial condition satisfied by monotone sequences.
引用
收藏
页码:307 / 316
页数:10
相关论文
共 10 条