Multiwavelength optical sensor based on a gradient photonic crystal with a hexagonal plasmonic array

被引:8
作者
Dedelaite, Lina [1 ]
Rodriguez, Raul D. [2 ]
Schreiber, Benjamin [3 ]
Ramanavicius, Arunas [1 ]
Zahn, Dietrich R. T. [4 ]
Sheremet, Evgeniya [2 ]
机构
[1] Vilnius Univ, Fac Chem & Geosci, Dept Phys Chem, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[2] Tomsk Polytech Univ, 30 Lenin Ave, Tomsk 634050, Russia
[3] Univ Wurzburg, Rudolf Virchow Ctr, Josef Schneider Str 2, D-97080 Wurzburg, Germany
[4] Tech Univ Chemnitz, Semicond Phys, D-09107 Chemnitz, Germany
基金
俄罗斯科学基金会;
关键词
Optical sensor; Photonics; Surface-enhanced Raman spectroscopy; Photonic crystal; ENHANCED RAMAN-SCATTERING; POROUS SILICON; NANOSPHERE LITHOGRAPHY; SURFACE; SPECTROSCOPY; SILVER; NANOPARTICLES; NANOSTRUCTURES; SPECTRA;
D O I
10.1016/j.snb.2020.127837
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sensitivity and versatility are characteristics that make a sensor device attractive for wide-spread applications in everyday life. Surface-enhanced Raman spectroscopy (SERS) is capable of providing the highest sensitivity, that of single-molecule detection, and excellent specificity due to its fingerprinting capability. However, conventional SERS substrates must be optimized to operate for a particular excitation wavelength. Here in this work, we achieve for the first time multiwavelength amplification with a hybrid plasmonic/photonic heterostructure integrating a gradient photonic crystal and an Ag nanotriangle array. We demonstrate the detection of ultrathin molecular layers showing a signal amplification for the typical laser wavelengths used in Raman spectroscopy detection. By combining photonics and plasmonics in a single silicon chip, we expand multiwavelength- and spatially-selective ultra-sensitive detection to a wide range of applications from biomedicine to safety.
引用
收藏
页数:9
相关论文
共 54 条
[1]  
[Anonymous], LITHOGRAPHY
[2]   Optical Interference Substrates for Nanoparticles and Two-Dimensional Materials [J].
Bacsa, Wolfgang S. ;
Pavlenko, Ekaterina ;
Tishkova, Victoria .
NANOMATERIALS AND NANOTECHNOLOGY, 2013, 3
[3]   Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films [J].
Birnbaum, Tobias ;
Hahn, Torsten ;
Martin, Claudia ;
Kortus, Jens ;
Fronk, Michael ;
Lungwitz, Frank ;
Zahn, Dietrich R. T. ;
Salvan, Georgeta .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (10)
[4]   RESONANCE RAMAN-SPECTRA OF ALPHA-COPPER PHTHALOCYANINE [J].
BOVILL, AJ ;
MCCONNELL, AA ;
NIMMO, JA ;
SMITH, WE .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (04) :569-575
[5]   OPTICAL STUDY OF PHOTON-TRAPPED POROUS SILICON LAYER [J].
CHEN, LY ;
HOU, XY ;
HUANG, DM ;
HAO, PH ;
ZHANG, FL ;
FENG, XW ;
QIAN, YH ;
WANG, X .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1994, 33 (4A) :1937-1943
[6]   Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials [J].
Colson, Pierre ;
Henrist, Catherine ;
Cloots, Rudi .
JOURNAL OF NANOMATERIALS, 2013, 2013
[7]   INTERFERENCE ENHANCED RAMAN-SCATTERING FROM VERY THIN ABSORBING FILMS [J].
CONNELL, GAN ;
NEMANICH, RJ ;
TSAI, CC .
APPLIED PHYSICS LETTERS, 1980, 36 (01) :31-33
[8]   Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces [J].
Corio, P ;
Brown, SDM ;
Marucci, A ;
Pimenta, MA ;
Kneipp, K ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2000, 61 (19) :13202-13211
[9]  
de la Mora MB, 2013, STATE OF THE ART IN BIOSENSORS - GENERAL ASPECTS, P141, DOI 10.5772/52975
[10]   Spectroscopic ellipsometry of metal phthalocyanine thin films [J].
Djurisic, AB ;
Kwong, CY ;
Lau, TW ;
Liu, ZT ;
Kwok, HS ;
Lam, LSM ;
Chan, WK .
APPLIED OPTICS, 2003, 42 (31) :6382-6387