Factorizing complex symmetric matrices with positive definite real and imaginary parts

被引:38
作者
Higham, NJ [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
complex symmetric matrices; LU factorization; diagonal pivoting factorization; block LDLT factorization; Bunch-Kaufman pivoting strategy; growth factor; band matrix; LINPACK; LAPACK;
D O I
10.1090/S0025-5718-98-00978-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Complex symmetric matrices whose real and imaginary parts are positive definite are shown to have a growth factor bounded by 2 for LU factorization. This result adds to the classes of matrix for which it is known to be safe not to pivot in LU factorization. Block LDLT factorization with the pivoting strategy of Bunch and Kaufman is also considered, and it is shown that for such matrices only 1 x 1 pivots are used and the same growth factor bound of 2 holds, but that interchanges that destroy band structure may be made. The latter results hold whether the pivoting strategy uses the usual absolute value or the modification employed in LINPACK and LAPACK.
引用
收藏
页码:1591 / 1599
页数:9
相关论文
共 20 条
[1]  
ANDERSON E, 1995, LAPACK USERS GUIDE R
[2]  
BUNCH JR, 1977, MATH COMPUT, V31, P163, DOI 10.1090/S0025-5718-1977-0428694-0
[3]   A QL procedure for computing the eigenvalues of complex symmetric tridiagonal matrices [J].
Cullum, JK ;
Willoughby, RA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) :83-109
[4]  
Dongarra Jack J., 1991, SOLVING LINEAR SYSTE
[5]  
DONGARRA JJ, 1979, LINPACK USERS GUIDE
[6]  
Fairweather G., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P106, DOI 10.1007/BF01947749
[7]   CONJUGATE GRADIENT-TYPE METHODS FOR LINEAR-SYSTEMS WITH COMPLEX SYMMETRICAL COEFFICIENT MATRICES [J].
FREUND, RW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01) :425-448
[8]   On the stability of Cholesky factorization for symmetric quasidefinite systems [J].
Gill, PE ;
Saunders, MA ;
Shinnerl, JR .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (01) :35-46
[9]   UNSYMMETRIC POSITIVE DEFINITE LINEAR-SYSTEMS [J].
GOLUB, GH ;
VANLOAN, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 28 (DEC) :85-97
[10]  
Haynsworth EV., 1968, LINEAR ALGEBRA APPL, V1, P73, DOI [10.1016/0024-3795(68)90050-5, DOI 10.1016/0024-3795(68)90050-5]