New extensions of Chebyshev-Polya-Szego type inequalities via conformable integrals

被引:7
作者
Deniz, Erhan [1 ]
Akdemir, Ahmet Ocak [2 ]
Yuksel, Ebru [2 ]
机构
[1] Kafkas Univ, Fac Sci & Letters, Dept Math, Kars, Turkey
[2] Ibrahim Cecen Univ Agri, Fac Arts & Sci, Dept Math, Agri, Turkey
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 02期
关键词
Chebyshev inequality; Polya-Szego type inequalities; conformable fractional integrals; EQUATIONS; MODEL;
D O I
10.3934/math.2020066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, several papers related to integral inequalities involving various fractional integral operators have been presented. In this work, motivated essentially by the previous works, we prove some new Polya-Szego inequalities via conformable fractional integral operator and use them to prove some new fractional Chebyshev type inequalities concerning the integral of the product of two functions and the product of two integrals which are improvement of the results in the paper [Ntouyas, S.K., Agarwal, P. and Tariboon, J., On Polya-Szego and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal (see [9])].
引用
收藏
页码:956 / 965
页数:10
相关论文
共 24 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC - Fractional Volterra integro-differential equations [J].
Abu Arqub, Omar ;
Maayah, Banan .
CHAOS SOLITONS & FRACTALS, 2019, 126 :394-402
[3]   Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense [J].
Abu Arqub, Omar ;
Maayah, Banan .
CHAOS SOLITONS & FRACTALS, 2019, 125 :163-170
[4]   Application of Residual Power Series Method for the Solution of Time-fractional Schrodinger Equations in One-dimensional Space [J].
Abu Arqub, Omar .
FUNDAMENTA INFORMATICAE, 2019, 166 (02) :87-110
[5]   Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis [J].
Abu Arqub, Omar .
FUNDAMENTA INFORMATICAE, 2019, 166 (02) :111-137
[6]  
[Anonymous], 2017, CREATIVE MATH INFORM
[7]  
[Anonymous], 1925, Aufgaben und Lehrsatze aus der Analysis
[8]   A note on fractional difference operators [J].
Baliarsingh, P. ;
Nayak, L. .
ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (02) :1051-1054
[9]   On a fractional difference operator [J].
Baliarsingh, P. .
ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (02) :1811-1816
[10]  
Chebyshev P.I., 1882, Proc. Math. Soc. Kharkov, V2, P93