A discrete kinetic approximation for the incompressible Navier-Stokes equations

被引:12
作者
Carfora, Maria Francesca [1 ]
Natalini, Roberto [2 ]
机构
[1] CNR, Inst Applicaz Calcolo M Picone, I-80131 Naples, Italy
[2] CNR, Inst Applicaz Calcolo M Picone, I-00161 Rome, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 01期
关键词
incompressible fluids; kinetic schemes; BGK models; finite difference schemes;
D O I
10.1051/m2an:2007055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 28 条
[21]  
Perthame B., 2002, OXFORD LECT SERIES M, V21
[22]   ACCURACY OF DISCRETE-VELOCITY BGK MODELS FOR THE SIMULATION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
REIDER, MB ;
STERLING, JD .
COMPUTERS & FLUIDS, 1995, 24 (04) :459-467
[23]  
Succi S., 2001, The lattice Boltzmann equation: for fluid dynamics and beyond
[24]  
TEMAM R, 1969, ARCH RATION MECH AN, V32, P135
[25]  
TEMAM R, 1969, ARCH RATION MECH AN, V33, P377
[26]   Error analysis for Chorin's original fully discrete projection method and regularizations in space and time [J].
Wetton, BR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1683-1697
[27]   Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow [J].
Wetton, BR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :723-755
[28]  
Wolf-Gladrow D. A., 2000, LECT NOTES MATH, V1725