A discrete kinetic approximation for the incompressible Navier-Stokes equations

被引:13
作者
Carfora, Maria Francesca [1 ]
Natalini, Roberto [2 ]
机构
[1] CNR, Inst Applicaz Calcolo M Picone, I-80131 Naples, Italy
[2] CNR, Inst Applicaz Calcolo M Picone, I-00161 Rome, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2008年 / 42卷 / 01期
关键词
incompressible fluids; kinetic schemes; BGK models; finite difference schemes;
D O I
10.1051/m2an:2007055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 28 条
[1]  
[Anonymous], [No title captured]
[2]   Discrete kinetic schemes for multidimensional systems of conservation laws [J].
Aregba-Driollet, D ;
Natalini, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :1973-2004
[3]  
Aregba-Driollet D, 2004, MATH COMPUT, V73, P63, DOI 10.1090/S0025-5718-03-01549-7
[4]   Compressible and incompressible limits for hyperbolic systems with relaxation [J].
Banda, MK ;
Seaïd, M ;
Klar, A ;
Pareschi, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) :41-52
[5]   Hyperbolic limit of the Jin-Xin relaxation model [J].
Bianchini, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (05) :688-753
[6]   Galilean-invariant lattice-Boltzmann models with H theorem -: art. no. 025103 [J].
Boghosian, BM ;
Love, PJ ;
Coveney, PV ;
Karlin, IV ;
Succi, S ;
Yepez, J .
PHYSICAL REVIEW E, 2003, 68 (02) :4
[7]   Construction of BGK models with a family of kinetic entropies for a given system of conservation laws [J].
Bouchut, F .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :113-170
[8]   Entropy satisfying flux vector splittings and kinetic BGK models [J].
Bouchut, F .
NUMERISCHE MATHEMATIK, 2003, 94 (04) :623-672
[9]   On a relaxation approximation of the incompressible Navier-Stokes equations [J].
Brenier, Y ;
Natalini, R ;
Puel, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) :1021-1028
[10]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&