Performance evaluation of metaheuristics algorithms for workload prediction in cloud environment

被引:16
作者
Kumar, Jitendra [1 ]
Singh, Ashutosh Kumar [2 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Comp Applicat, Tiruchirappalli, Tamil Nadu, India
[2] Natl Inst Technol Kurukshetra, Dept Comp Applicat, Kurukshetra, Haryana, India
关键词
Predictive analytics; Optimization; Cloud computing; Neural network; Nature-inspired algorithms; Statistical analysis; FORECASTING-MODEL; NEURAL-NETWORKS; OPTIMIZATION; MANAGEMENT; FRAMEWORK;
D O I
10.1016/j.asoc.2021.107895
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The smooth operation of a cloud data center along with the best user experience is one of the prime objectives of a resource management scheme that must be achieved at low cost in terms of resource wastage, electricity consumption, security and many others. The workload prediction has proved to be very useful in improving these schemes as it provides the prior estimation of upcoming demands. These predictions help a cloud system in assigning the resources to new and existing applications on low cost. Machine learning has been extensively used to design the predictive models. This article aims to study the performance of different nature-inspired based metaheuristic algorithms on workload prediction in cloud environment. We conducted an in-depth analysis using eight widely used algorithms on five different data traces. The performance of each approach is measured using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). In addition, the statistical analysis is also carried out using Wilcoxon signed rank and Friedman with Finner post-hoc multiple comparison tests. The study finds that Blackhole Algorithm (BhA) reduced the RMSE by 23.60%, 6.51%, 21.21%, 60.45% and 38.30% relative to the worst performing algorithm for 5 min forecasts of all five data traces correspondingly. Moreover, Friedman test confirms that the results of these approaches have a significant difference with 95% confidence interval (CI) and ranks show that the BhA and FSA received best ranks for Google Cluster trace (CPU and Memory Requests) while second best ranks for NASA and Saskatchewan HTTP server requests. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fog Offloading and Task Management in IoT-Fog-Cloud Environment: Review of Algorithms, Networks, and SDN Application
    Rezaee, Mohammad Reza
    Hamid, Nor Asilah Wati Abdul
    Hussin, Masnida
    Zukarnain, Zuriati Ahmad
    IEEE ACCESS, 2024, 12 : 39058 - 39080
  • [42] An intelligent power consumption model for virtual machines under CPU-intensive workload in cloud environment
    Wu, Wentai
    Lin, Weiwei
    Peng, Zhiping
    SOFT COMPUTING, 2017, 21 (19) : 5755 - 5764
  • [43] Intelligent Algorithms Enable Photocatalyst Design and Performance Prediction
    Wang, Shifa
    Mo, Peilin
    Li, Dengfeng
    Syed, Asad
    CATALYSTS, 2024, 14 (04)
  • [44] A Comparative Evaluation of Algorithms for Auction-based Cloud Pricing Prediction
    Arevalos, Sara
    Lopez-Pires, Fabio
    Baran, Benjamin
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2016, : 99 - 108
  • [45] Queries Based Workload Management System for the Cloud Environment
    Maghawry, Eman A.
    Ismail, Rasha M.
    Badr, Nagwa L.
    Tolba, Mohamed Fahmy
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, AMLTA 2014, 2014, 488 : 77 - 86
  • [46] Performance Evaluation for Traditional Virtual Machine Placement Algorithms in the Cloud
    Bao, Ruo
    INTERNET OF VEHICLES - TECHNOLOGIES AND SERVICES, 2016, 10036 : 225 - 231
  • [47] Resource provisioning using workload clustering in cloud computing environment: a hybrid approach
    Shahidinejad, Ali
    Ghobaei-Arani, Mostafa
    Masdari, Mohammad
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2021, 24 (01): : 319 - 342
  • [48] Integrating Clustering and Learning for Improved Workload Prediction in the Cloud
    Yu, Yongjia
    Jindal, Vasu
    Yen, I-Ling
    Bastani, Farokh
    PROCEEDINGS OF 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2016, : 876 - 879
  • [49] Machine Learning Based Workload Prediction in Cloud Computing
    Gao, Jiechao
    Wang, Haoyu
    Shen, Haiying
    2020 29TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2020), 2020,
  • [50] Cloud Workload Prediction Using ConvNet And Stacked LSTM
    Yazdanian, Peyman
    Sharifian, Saeed
    2018 4TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2018, : 83 - 87