Euclid-Roman joint microlensing survey: Early mass measurement, free floating planets, and exomoons

被引:17
作者
Bachelet, E. [1 ,7 ]
Specht, D. [2 ]
Penny, M. [3 ]
Hundertmark, M. [4 ]
Awiphan, S. [5 ]
Beaulieu, J-P [1 ,6 ]
Dominik, M. [8 ]
Kerins, E. [2 ]
Maoz, D. [9 ]
Meade, E. [10 ]
Nucita, A. A. [11 ,12 ,13 ]
Poleski, R. [14 ]
Ranc, C. [1 ,4 ]
Rhodes, J. [15 ]
Robin, A. C. [16 ]
机构
[1] Sorbonne Univ, CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Bd Arago, F-75014 Paris, France
[2] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England
[3] Ohio State Univ, Dept Astron, 140 West 18th Ave, Columbus, OH 43210 USA
[4] Univ Heidelberg ZAH, Astron Rech Inst, Zentrum Astron, D-69120 Heidelberg, Germany
[5] Natl Astron Res Inst Thailand, 260 Moo 4, Chiang Mai 50180, Thailand
[6] Univ Tasmania, Sch Phys Sci, Private Bag 37, Hobart, Tas 7001, Australia
[7] Las Cumbres Observ, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA
[8] Univ St Andrews, Ctr Exoplanet Sci, SUPA Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[9] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[10] Univ Texas Dallas, Dept Phys, 800 W Campbell Rd, Richardson, TX 75080 USA
[11] Univ Salento, Dept Math & Phys, Via Arnesano, I-73100 Lecce, Italy
[12] Ist Nazl Fis Nucl, Sez Lecce, Via Arnesano,CP 193, I-73100 Lecce, Italy
[13] INAF, Sez Lecce, Via Arnesano,CP 193, I-73100 Lecce, Italy
[14] Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland
[15] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[16] Univ Bourgogne Franche Comte, OSU THETA Franche Comte Bourgogne, Observ Besancon, Inst UTINAM CNRS,UMR6213, BP1615, F-25010 Besancon, France
基金
欧洲研究理事会; 澳大利亚研究理事会; 英国科学技术设施理事会;
关键词
gravitational lensing: micro; planetary systems; GALACTIC BULGE; EARTH-MASS; PARALLAX; DWARF; STAR; DISCOVERY; SPITZER; REGION; IV;
D O I
10.1051/0004-6361/202140351
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As the Kepler mission has done for hot exoplanets, the ESA Euclid and NASA Roman missions have the potential to create a breakthrough in our understanding of the demographics of cool exoplanets, including unbound, or free-floating, planets (FFPs). Roman will dedicate part of its core survey program to the detection of cool exoplanets via microlensing, while Euclid may undertake a microlensing program as an ancillary science goal. In this study, we demonstrate the complementarity of the two missions and propose two joint surveys to better constrain the mass and distance of microlensing events. We first demonstrate that an early brief Euclid survey (similar to 7 h) of the Roman microlensing fields will allow the measurement of at least 30% of the events' relative proper motions mu(rel) and 42% of the lens magnitudes. This survey would place strong constraints on the mass and distance on thousands of microlensing events observed by Roman just after the first year of observation. Then, we study the potential of simultaneous observations by Roman and Euclid to enable the measurement of the microlensing parallax for the shortest microlensing events and, ultimately, obtain a direct measurement of the masses, distances, and transverse motions of FFPs. Using detailed simulations of the joint detection yield we show that within one year Roman-Euclid observations will be at least an order of magnitude more sensitive than current ground-based measurements. The recent tentative detection of an excess of short-duration events by the OGLE survey is consistent with a scenario of up to ten Earth-mass FFPs per Galactic star. For such a scenario a joint Roman-Euclid campaign should detect around 130 FFP events within a year, including 110 with measured parallax that strongly constrain the FFP mass, and around 30 FFP events with direct mass and distance measurements. The ability of the joint survey to completely break the microlens mass-distance-velocity degeneracy for a significant subset of events provides a unique opportunity to verify unambiguously the FFP hypothesis or else place abundance limits for FFPs between Earth and Jupiter masses that are up to two orders of magnitude stronger than provided by ground-based surveys. Finally, we study the capabilities of the joint survey to enhance the detection and characterization of exomoons, and find that it could lead to the detection of the first exomoon.
引用
收藏
页数:15
相关论文
共 70 条
[1]  
Awiphan S., 2015, MNRAS, V456, P1666, DOI [10.1093/mnras/stv2625, DOI 10.1093/MNRAS/STV2625]
[2]   pyLIMA: An Open-source Package for Microlensing Modeling. I. Presentation of the Software and Analysis of Single-lens Models [J].
Bachelet, E. ;
Norbury, M. ;
Bozza, V. ;
Street, R. .
ASTRONOMICAL JOURNAL, 2017, 154 (05)
[3]   WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space [J].
Bachelet, Etienne ;
Penny, Matthew .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 880 (02)
[4]  
Baltay C., 2015, arXiv e-prints. arXiv:1503. 03757
[5]   Probability of simultaneous parallax detection for free-floating planet microlensing events near Galactic Centre [J].
Ban, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (03) :3235-3252
[6]   The microlensing rate and distribution of free-floating planets towards the Galactic bulge [J].
Ban, M. ;
Kerins, E. ;
Robin, A. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 595
[7]   CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS-SOURCE PROPER MOTION DETECTION [J].
Batista, V. ;
Beaulieu, J. -P. ;
Bennett, D. P. ;
Gould, A. ;
Marquette, J. -B. ;
Fukui, A. ;
Bhattacharya, A. .
ASTROPHYSICAL JOURNAL, 2015, 808 (02)
[8]   Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations [J].
Beaulieu, Jean-Philippe .
UNIVERSE, 2018, 4 (04)
[9]   MOA-2011-BLG-262Lb: A SUB-EARTH-MASS MOON ORBITING A GAS GIANT PRIMARY OR A HIGH VELOCITY PLANETARY SYSTEM IN THE GALACTIC BULGE [J].
Bennett, D. P. ;
Batista, V. ;
Bond, I. A. ;
Bennett, C. S. ;
Suzuki, D. ;
Beaulieu, J. -P. ;
Udalski, A. ;
Donatowicz, J. ;
Bozza, V. ;
Abe, F. ;
Botzler, C. S. ;
Freeman, M. ;
Fukunaga, D. ;
Fukui, A. ;
Itow, Y. ;
Koshimoto, N. ;
Ling, C. H. ;
Masuda, K. ;
Matsubara, Y. ;
Muraki, Y. ;
Namba, S. ;
Ohnishi, K. ;
Rattenbury, N. J. ;
Saito, To. ;
Sullivan, D. J. ;
Sumi, T. ;
Sweatman, W. L. ;
Tristram, P. J. ;
Tsurumi, N. ;
Wada, K. ;
Yock, P. C. M. ;
Albrow, M. D. ;
Bachelet, E. ;
Brillant, S. ;
Caldwell, J. A. R. ;
Cassan, A. ;
Cole, A. A. ;
Corrales, E. ;
Coutures, C. ;
Dieters, S. ;
Prester, D. Dominis ;
Fouque, P. ;
Greenhill, J. ;
Horne, K. ;
Koo, J. -R. ;
Kubas, D. ;
Marquette, J. -B. ;
Martin, R. ;
Menzies, J. W. ;
Sahu, K. C. .
ASTROPHYSICAL JOURNAL, 2014, 785 (02)
[10]  
Bennett D.P., 2018, ARXIV