High-speed photoacoustic microscopy: A review dedicated on light sources

被引:72
作者
Cho, Soon-Woo [1 ]
Park, Sang Min [1 ]
Park, Byullee [2 ]
Kim, Do Yeon [3 ,4 ]
Lee, Tae Geol [3 ]
Kim, Beop-Min [4 ,6 ]
Kim, Chulhong [2 ]
Kim, Jeesu [1 ]
Lee, Sang-Won [3 ,5 ]
Kim, Chang-Seok [1 ]
机构
[1] Pusan Natl Univ, Dept Cogno Mechatron Engn, Busan 46241, South Korea
[2] Pohang Univ Sci & Technol, Dept Elect Engn Convergence IT Engn & Mech Engn, Med Device Innovat Ctr, Pohang 37673, South Korea
[3] Korea Res Inst Stand & Sci, Safety Measurement Inst, Daejeon 34113, South Korea
[4] Korea Univ, Dept Bioconvergence Engn, Seoul 02841, South Korea
[5] Univ Sci & Technol, Dept Med Phys, Daejeon 34113, South Korea
[6] Korea Univ, Interdisciplinary Program Precis Publ Hlth, Seoul 02481, South Korea
来源
PHOTOACOUSTICS | 2021年 / 24卷
基金
新加坡国家研究基金会;
关键词
Photoacoustic microscopy; High-speed imaging; Light sources; Fiber laser; OPTICAL COHERENCE TOMOGRAPHY; MULTISPECTRAL OPTOACOUSTIC TOMOGRAPHY; HIGH-RESOLUTION; FIBER LASER; IMAGING-SYSTEM; PULSED-LASER; SWEPT SOURCE; NANOPARTICLES; MELANOMA;
D O I
10.1016/j.pacs.2021.100291
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In recent years, many methods have been investigated to improve imaging speed in photoacoustic microscopy (PAM). These methods mainly focused upon three critical factors contributing to fast PAM: laser pulse repetition rate, scanning speed, and computing power of the microprocessors. A high laser repetition rate is fundamentally the most crucial factor to increase the PAM speed. In this paper, we review methods adopted for fast PAM systems in detail, specifically with respect to light sources. To the best of our knowledge, ours is the first review article analyzing the fundamental requirements for developing high-speed PAM and their limitations from the perspective of light sources.
引用
收藏
页数:15
相关论文
共 153 条
  • [1] Chromophore selective multi-wavelength photoacoustic remote sensing of unstained human tissues
    Abbasi, Saad
    Le, Martin
    Sonier, Bazil
    Bell, Kevan
    Dinakaran, Deepak
    Bigras, Gilbert
    Mackey, John
    Reza, Parsin Haji
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (11): : 5461 - 5469
  • [2] Agrawal GP., 2019, Nonlinear fiber optics
  • [3] Alfano R.R., 2015, SUPERCONTINUUM LASER, Vthird
  • [4] Ultrafast laser-scanning optical resolution photoacoustic microscopy at up to 2 million A-lines per second
    Allen, Thomas John
    Spurrell, Josh
    Berendt, Martin O.
    Ogunlade, Olumide
    Alam, Shaif U.
    Zhang, Edward Z.
    Richardson, David J.
    Beard, Paul C.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (12)
  • [5] Baik J.W., 2019, IEEE transactions on medical imaging
  • [6] Cutaneous malignant melanoma, sun exposure, and sunscreen use: epidemiological evidence
    Bastuji-Garin, S
    Diepgen, TL
    [J]. BRITISH JOURNAL OF DERMATOLOGY, 2002, 146 : 24 - 30
  • [7] Bell A G, 1880, Science, V1, P130, DOI 10.1126/science.os-1.12.130
  • [8] In vivo label-free functional photoacoustic monitoring of ischemic reperfusion
    Bi, Renzhe
    Dinish, U. S.
    Goh, Chi Ching
    Imai, Toru
    Moothanchery, Mohesh
    Li, Xiuting
    Kim, Jin Young
    Jeon, Seungwan
    Pu, Yang
    Kim, Chulhong
    Ng, Lai Guan
    Wang, Lihong V.
    Olivo, Malini
    [J]. JOURNAL OF BIOPHOTONICS, 2019, 12 (07)
  • [9] Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma
    Bi, Renzhe
    Balasundaram, Ghayathri
    Jeon, Seungwan
    Tay, Hui Chien
    Pu, Yang
    Li, Xiuting
    Moothanchery, Mohesh
    Kim, Chulhong
    Olivo, Malini
    [J]. JOURNAL OF BIOPHOTONICS, 2018, 11 (10)
  • [10] Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source
    Billeh, Yazan N.
    Liu, Mengyang
    Buma, Takashi
    [J]. OPTICS EXPRESS, 2010, 18 (18): : 18519 - 18524