Extragradient Methods for Solving Equilibrium Problems, Variational Inequalities, and Fixed Point Problems

被引:16
作者
Jouymandi, Zeynab [1 ]
Moradlou, Fridoun [1 ]
机构
[1] Sahand Univ Technol, Dept Math, Tabriz, Iran
关键词
Generalized equilibrium problem; generalized metric projection; relatively nonexpansive mapping; strong convergence; variational inequality; RELATIVELY NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE THEOREM; WEAK-CONVERGENCE; BANACH-SPACES; MONOTONE-OPERATORS; HYBRID MAPPINGS;
D O I
10.1080/01630563.2017.1321017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the new extragradient algorithms for an alpha-inverse-strongly monotone operator and a relatively nonexpansive mapping in Banach spaces. We prove convergence theorems by this methods under suitable conditions. Applying our algorithms, we find a zero paint of maximal monotone operators. Using FMINCON optimization toolbox in MATLAB, we give an example to illustrate the usability of our results.
引用
收藏
页码:1391 / 1409
页数:19
相关论文
共 20 条
[1]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[2]  
Alber Y. I., 1996, THEORY APPL NONLINEA, V178, P15
[3]   WEAK CONVERGENCE THEOREMS FOR 2-GENERALIZED HYBRID MAPPINGS AND EQUILIBRIUM PROBLEMS [J].
Alizadeh, Sattar ;
Moradlou, Fridoun .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04) :765-777
[4]   A Strong Convergence Theorem for Equilibrium problems and Generalized Hybrid mappings [J].
Alizadeh, Sattar ;
Moradlou, Fridoun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) :379-390
[5]   Weak convergence of orbits of nonlinear operators in reflexive Banach [J].
Butnariu, D ;
Reich, S ;
Zaslavski, AJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :489-508
[6]   WEAK CONVERGENCE THEOREMS FOR GENERAL EQUILIBRIUM PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN BANACH SPACES [J].
Cai, Gang ;
Bu, Shangquan .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) :303-320
[7]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[8]  
Censor Y, 2010, TECHNICAL REPORT
[9]  
Cho YJ, 2004, COMPUT MATH APPL, V47, P707, DOI [10.1016/S0898-1221(04)90058-2, 10.1016/S0898-1221(04)00059-8]
[10]   NONEXPANSIVE RETRACTIONS ONTO CLOSED CONVEX CONES IN BANACH SPACES [J].
Honda, Takashi ;
Takahashi, Wataru ;
Yao, Jen-Chih .
TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (3B) :1023-1046