On Carlitz compositions

被引:33
作者
Knopfmacher, A
Prodinger, H
机构
[1] Univ Witwatersrand, Dept Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[2] Tech Univ Vienna, Dept Algebra & Discrete Math, A-1040 Vienna, Austria
关键词
D O I
10.1006/eujc.1998.0216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Carlitz compositions of natural numbers (adjacent parts have to be different). The following parameters are analysed: number of parts, number of equal adjacent parts in ordinary compositions, largest part, Carlitz compositions with zeros allowed (correcting an erroneous formula from Carlitz). It is also briefly demonstrated that so-called 1-compositions of a natural number can be treated in a similar style. (C) 1998 Academic Press.
引用
收藏
页码:579 / 589
页数:11
相关论文
共 15 条
[1]  
Andrews G. E., 1976, THEORY PARTITIONS
[2]   THE HARD-HEXAGON MODEL AND ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (09) :5290-5292
[3]  
[Anonymous], 1978, INDAGATIONES MATH
[4]  
[Anonymous], 1973, J COMB THEORY A
[5]  
[Anonymous], 1983, COMBINATORIAL ENUMER
[6]  
CARLITZ L, 1976, FIBONACCI QUART, V14, P254
[7]   MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS [J].
FLAJOLET, P ;
GOURDON, X ;
DUMAS, P .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :3-58
[8]   LEVEL NUMBER SEQUENCES FOR TREES [J].
FLAJOLET, P ;
PRODINGER, H .
DISCRETE MATHEMATICS, 1987, 65 (02) :149-156
[9]  
GOURDON X, 1996, THESIS ECOLE POLYTEC
[10]   Measures of distinctness for random partitions and compositions of an integer [J].
Hwang, HK ;
Yeh, YN .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (03) :378-414